Neurochemical markers of coping intelligence
Irina O. Kuvaeva , Elena V. Volkova
Kazan medical journal ›› 2024, Vol. 105 ›› Issue (2) : 260 -271.
Neurochemical markers of coping intelligence
Coping intelligence is associated with an individual’s ability to overcome stressful situations, maintaining health potential and increasing the potential for personal development. This study is a systematic review of biochemical and neuronal markers of different levels of coping intelligence, which determine different lines of human development in stressful situations. 45 publications selected from the Nature and RSCI electronic databases were analyzed, the results were summarized in three sections: (1) genetic and epigenetic correlates of individual differences in coping intelligence; (2) neurochemical systems of coping intelligence (glucocorticoids, interleukins, brain-derived neurotrophic factor, monoamines); (3) manifestations of stable and regressive lines of development of the subject in stressful situations. Molecular genetic determinants of coping intelligence were systematized according to the following systems: serotonergic, dopaminergic, noradrenergic, etc. The interaction of neurochemical systems (catecholamines, glucocorticoids, interleukins, brain-derived neurotrophic factor, monoamines) reflects the peculiarities of the stress reaction in humans and determines the development line of the subject in stressful situations. Genetic predisposition, unfavorable epigenetic factors and chronic stress increase the risk of developing stress-related diseases (regressive line of development). A stable stress-coping system is associated with a balance of mineralocorticoid and glucocorticoid receptors, pro-inflammatory and anti-inflammatory cytokines, an optimal ratio of cortisol and dehydroepiandrosterone sulfate, a sufficient level of brain-derived neurotrophic factor, and a healthy microbiota (stable line). A review of the literature indicated the need to analyze neurochemical systems (monoamines, opioid receptors, acetylcholine, microbiota) that determine a high level of coping intelligence (a progressive line of human development in stressful situations). The study of neurochemical markers of coping intelligence should be accompanied by personality analysis (mental representations of stress, coping strategies) to provide personalized medical care and preserve a person’s health potential.
patient’s personality / stress-related diseases / stress resistance / personalized medicine
| [1] |
Sapol'ski R. Psikhologiya stressa. (Psychology of stress.) SPb.: Piter; 2015. 480 p. (In Russ.) |
| [2] |
Сапольски Р. Психология стресса. СПб.: Питер; 2015. 480 с. |
| [3] |
Val'dman AV, Kozlovskaya MM, Medvedev OS. Farmakologicheskaya regulyatsiya emotsional'nogo stressa. (Pharmacological regulation of emotional stress.) М.: Meditsina; 1979. 360 p. (In Russ.) |
| [4] |
Вальдман А.В., Козловская М.М., Медведев О.С. Фармакологическая регуляция эмоционального стресса. М.: Медицина; 1979. 360 с. |
| [5] |
Agorastos A, Chroustos G. The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Mol Psychiatry. 2022;27:502–513. DOI: 10.1038/s41380-021-01224-9. |
| [6] |
Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20(1):32–47. DOI: 10.1038/mp.2014.163. |
| [7] |
Meerson FZ, Pshennikova MG. Adaptatsiya k stressornym situatsiyam i fizicheskim nagruzkam. (Adaptation to stressful situations and physical activity.) M.: Meditsina; 1988. 256 p. (In Russ.) |
| [8] |
Меерсон Ф.З., Пшенникова М.Г. Адаптация к стрессорным ситуациям и физическим нагрузкам. М.: Медицина; 1988. 256 с. |
| [9] |
Kukhtinskaya LV, Zuraev AV, Budevich VA, Mosse IB. Modern concepts of human psychoemotional sustainable genetic determinants. Molekulyarnaya i prikladnaya genetika. 2016;20:96–109. (In Russ.) EDN: YGBOPJ. |
| [10] |
Кухтинская Л.В., Зураев А.В., Будевич В.А., Моссэ И.Б. Современные представления о генетических детерминантах психоэмоциональной устойчивости человека (обзорная статья). Молекулярная и прикладная генетика. 2016;20:96–109. EDN: YGBOPJ. |
| [11] |
Volkova EV, Kuvaeva IO. Sovladayushchiy intellekt: differentsionno-integratsionnoy podkhod. (Coping intelligence: a differentiation-integration approach.) M.: Institut psikhologii RAN; 2023. 440 p. (In Russ.) |
| [12] |
Волкова Е.В., Куваева И.О. Совладающий интеллект: дифференционно-интеграционной подход. М.: Институт психологии РАН; 2023. 408 c. |
| [13] |
Volkova EV, Kuvaeva IO. The measure of hierarchy of the concept stress and copings in freshmen of different cultures. Siberian Journal of Psychology. 2022;(86):48–65. (In Russ.) DOI: 10.17223/17267080/86/3. |
| [14] |
Волкова Е.В., Куваева И.О. Мера иерархичности концепта. Стресс и совладающее поведение у первокурсников разных культур. Сибирский психологический журнал. 2022;(86):48–65. DOI: 10.17223/17267080/86/3. |
| [15] |
Kuvaeva IO, Volkova EV. Biochemical correlates of individual differences in coping intelligence. Natural Systems of Mind. 2022;2(2):18–34. DOI:10.38098/nsom_2022_02_02_03. |
| [16] |
Libin E. Multidimensional positive coping model. Monographs of coping institute; 2003. 188 p. |
| [17] |
Libin E. Coping intelligence: Efficient life stress management. Front Psychol. 2017;8:302. DOI: 10.3389/fpsyg.2017.00302. |
| [18] |
Zuev KV, Volkova EV. Publication culture of russian science: International perspectives. Natural System of Mind. 2022;2(1):5–13. DOI: 10.38098/nsom_2022_02_01_01. |
| [19] |
Maksimenko LV. Epigenetics as an evidence base of the impact of lifestyle on health and disease. Russian Journal of Preventive Medicine. 2019;(2):115–119. (In Russ.) DOI: 10.17116/profmed201922021115. |
| [20] |
Максименко Л.В. Эпигенетика как доказательная база влияния образа жизни на здоровье и болезни. Профилактическая медицина. 2019;(2):115–119. DOI: 10.17116/profmed201922021115. |
| [21] |
Chistyakova NV, Savostoyanov KV. The hypothalamic-pituitary-adrenal axis and genetic variants affecting its reactivity. Russian Journal of Genetics. 2011;47(8): 895–906. (In Russ.) DOI: 10.1134/S1022795411080035. |
| [22] |
Чистякова Н.В., Савостоянов К.В. Гипоталамо-гипофизарно-надпочечниковая ось и генетические варианты, влияющие на её активность. Генетика. 2011;47(8):1013–1025. DOI: 10.1134/S1022795411080035. |
| [23] |
Sapol'ski R. Kto my takie? Geny, nashe telo, obshchestvo. (Who are we? Genes, our body, society.) M.: Alpina non-fiction; 2023. 256 p. (In Russ.) |
| [24] |
Сапольски Р. Кто мы такие? Гены, наше тело, общество. М.: Альпина нон-фикшн; 2023. 256 с. |
| [25] |
Dyuzhikova NA, Skomorokhova EB, Vaido AI. Epigenetic mechanisms in post-stress states. Uspekhi fiziologicheskikh nauk. 2015;46(1):47–75. (In Russ.) EDN: TOESOZ. |
| [26] |
Дюжикова Н.А., Скоморохова Е.Б., Вайдо А.И. Эпигенетические механизмы формирования постстрессорных состояний. Успехи физиологических наук. 2015;46(1):47–75. EDN: TOESOZ. |
| [27] |
Kolyubaeva SN, Ivanov AM, Protasov OV, Krivoruchko AB, Eliseeva MI. Genetic predictors of regulation of the activity of a stress-system. Russian Military Medical Academy Reports. 2020;(2):35–45. (In Russ.) DOI: 10.17816/rmmar60321. |
| [28] |
Колюбаева С.Н., Иванов А.М., Протасов О.В., Криворучко А.Б., Елисеева М.И. Генетические предикторы регуляции активности стресс-системы. Известия Российской военно-медицинской академии. 2020;(2):35–45. DOI: 10.17816/rmmar60321. |
| [29] |
Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Nat Rev Neurosci. 2009;10:446–457. DOI: 10.1038/nrn2649. |
| [30] |
Kredlow AM, Fenster RJ, Laurent ES. Prefrontal cortex, amygdala, and threat processing: Implications for PTSD. Neuropsychopharmacology. 2022;47:247–259. DOI: 10.1038/s41386-021-01155-7. |
| [31] |
Malhi GS, Das P, Bell E. Modelling resilience in adolescence and adversity: A novel framework to inform research and practice. Transl Psychiatry. 2019;9:316. DOI: 10.1038/s41398-019-0651-y. |
| [32] |
Zannas AS, Wiechmann T, Gassen NC. Gene–stress–epigenetic regulation of FKBP5: Clinical and translational implications. Neuropsychopharmacology. 2016;41:261–274. DOI: 10.1038/npp.2015.235. |
| [33] |
Stein DJ, Newman TK, Savitz J. Warriors versus worriers: The role of COMT gene variants. CNS Spectr. 2006;10:745–748. DOI: 10.1017/s1092852900014863. |
| [34] |
Danese A, Lewis SJ. Psychoneuroimmunology of early-life stress: The hidden wounds of childhood trauma? Neuropsychopharmacology. 2017;42:99–114. DOI: 10.1038/npp.2016.198. |
| [35] |
McEwen B, Nasca C, Gray J. Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology. 2016;41:3–23. DOI: 10.1038/npp.2015.171. |
| [36] |
Peña CJ, Smith M, Ramakrishnan A, Cates HM, Bagot RS, Kronman HG, Patel B, Chang AB, Purushothaman I, Dudley J, Morishita H, Shen L, Nestler EJ. Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nat Commun. 2019;10:5098. DOI: 10.1038/s41467-019-13085-6. |
| [37] |
Lopez M, Ruiz MO, Rovnaghi CR. The social ecology of childhood and early life adversity. Pediatr Res. 2021;89:353–367. DOI: 10.1038/s41390-020-01264-x. |
| [38] |
Laird KT, Krause B, Funes C. Psychobiological factors of resilience and depression in late life. Transl Psychiatry. 2019;9:88. DOI: 10.1038/s41398-019-0424-7. |
| [39] |
Kozlov AI, Kozlova MA. Cortisol as a marker of stress. Human physiology. 2014;40(2):224–236. DOI: 10.7868/S013116461402009X. |
| [40] |
Козлов А.И., Козлова М.А. Кортизол как маркёр стресса. Физиология человека. 2014;40(2):123–136. DOI: 10.7868/S013116461402009X. |
| [41] |
Faraji J, Soltanpour N, Lotfi H. Lack of social support raises stress vulnerability in rats with a history of ancestral stress. Sci Rep. 2017;7:5277. DOI: 10.1038/s41598-017-05440-8. |
| [42] |
Vindas MA, Fokos S, Pavlidis M. Early life stress induces long-term changes in limbic areas of a teleost fish: The role of catecholamine systems in stress coping. Sci Rep. 2018;8:5638. DOI: 10.1038/s41598-018-23950-x. |
| [43] |
Nikolaeva EI. Psikhofiziologiya. (Psychophysiology.) SPb.: Piter; 2019. 704 p. (In Russ.) |
| [44] |
Николаева Е.И. Психофизиология. СПб.: Питер; 2019. 704 с. |
| [45] |
Ronald de Kloet E, Joels M. The cortisol switch between vulnerability and resilience. Mol Psychiatry. 2023. DOI: 10.1038/s41380-022-01934-8. |
| [46] |
Ushakov AV, Ivanchenko VS, Gagarina AA. Pathogenetic mechanisms of the formation of persistent arterial hypertension during chronic psychoemotional stress. Arterialnaya gipertenziya. 2016;22(2):128–143. (In Russ.) DOI: 10.18705/1607-419X-2016-22-2-128-143. |
| [47] |
Ушаков А.В., Иванченко В.С., Гагарина А.А. Патогенетические механизмы формирования стойкой артериальной гипертензии при хроническом психоэмоциональном напряжении. Артериальная гипертензия. 2016;22(2):128–143. DOI: 10.18705/1607-419X-2016-22-2-128-143. |
| [48] |
Tokarev AR. Neuro-cytokine mechanisms of acute stress (literature review). Vestnik novykh meditsinskikh tekhnologiy. Elektronnoe izdanie. 2019;(3):194–204. (In Russ.) DOI: 10.24411/2075-4094-2019-16469. |
| [49] |
Токарев А.Р. Нейро-цитокиновые механизмы острого стресса (обзор литературы). Вестник новых медицинских технологий. Электронное издание. 2019;(3):194–204. DOI: 10.24411/2075-4094-2019-16469. |
| [50] |
Teplyakova OV, Kuvaeva IO, Volkova EV. Stress, inflammation and coping strategies — association with rheumatological pathology. Kazan Medical Journal. 2023;104(6):885–895. (In Russ.) DOI: 10.17816/KMJ568607. |
| [51] |
Теплякова О.В., Куваева И.О., Волкова Е.В. Стресс, воспаление и стратегии совладающего поведения — ассоциация с ревматологической патологией. Казанский медицинский журнал. 2023;104(6):885–895. DOI: 10.17816/KMJ568607. |
| [52] |
Schwartz M, Shechter R. Protective autoimmunity functions by intracranial immunosurveillance to support the mind: The missing link between health and disease. Mol Psychiatry. 2010;15:342–354. DOI: 10.1038/mp.2010.31. |
| [53] |
Ménard C, Pfau ML, Hodes GE. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology. 2017;42:62–80. DOI: 10.1038/npp.2016.90. |
| [54] |
Shalaginova IG, Matskova LV, Gunitseva NM, Vakoliuk IA. Effects of the intestinal microbiota on epigenetic mechanisms involved in the development of post-stress neuro-inflammation. Ecological genetics. 2019;17(4):91–102. (In Russ.) DOI: 10.17816/ecogen17491-102. |
| [55] |
Шалагинова И.Г., Мацкова Л.В., Гуницева Н.М., Ваколюк И.А. Эпигенетический механизм влияния микробиоты кишечника на развитие постстрессорного нейровоспаления. Экологическая генетика. 2019;17(4):91–102. DOI: 10.17816/ecogen17491-102. |
| [56] |
Dinan TG, Cryan JF. Microbes, immunity, and behavior: Psychoneuroimmunology meets the microbiome. Neuropsychopharmacology. 2017;42:178–192. DOI: 10.1038/npp.2016.103. |
| [57] |
Dubovaya AV, Yaroshenko SYa, Prilutskaya OA. Chronic stress and brain-derived neurotrophic factor. Prakticheskaya meditsina. 2021;19(2):19–27. (In Russ.) DOI: 10.32000/2072-1757-2021-2-19-27. |
| [58] |
Дубовая А.В., Ярошенко С.Я., Прилуцкая О.А. Хронический стресс и нейротрофический фактор головного мозга. Практическая медицина. 2021;19(2):19–27. DOI: 10.32000/2072-1757-2021-2-19-27. |
| [59] |
Faustova AG, Krasnorutskaya ON. Role of brain-derived neurotrophic factor in coping with the consequences of psychotraumatic events. IP Pavlov Russian Medical Biological Herald. 2021;29(4):521–530. (In Russ.) DOI: 10.18413/2658-6533-2022-8-1-0-2. |
| [60] |
Фаустова А.Г., Красноруцкая О.Н. Роль нейтротрофического фактора головного мозга (BDNF) в процессе совладания с последствиями психотравмирующей ситуации. Российский медико-биологический вестник имени академика им. И.П. Павлова. 2021;29(4):521–530. DOI: 10.18413/2658-6533-2022-8-1-0-2. |
| [61] |
Linz R, Puhlmann LMC, Apostolakou F. Acute psychosocial stress increases serum BDNF levels: an antagonistic relation to cortisol but no group differences after mental training. Neuropsychopharmacology. 2019;44:1797–1804. DOI: 10.1038/s41386-019-0391-y. |
| [62] |
Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: An integrative model. Mol Psychiatry. 2020;25(3):530–543. DOI: 10.1038/s41380-019-0615-x. |
| [63] |
Dubovaya AV, Iaroshenko SYa, Prilutskaya OA. Chronic stress and brain-derived neurotrophic factor. Prakticheskaya meditsina. 2021;19(2):19–27. (In Russ.) |
| [64] |
Дубовая А.В., Ярошенко С.Я., Прилуцкая О.А. Хронический стресс и нейротрофический фактор головного мозга. Практическая медицина. 2021;19(2):19–27. |
| [65] |
Egeland M, Zunszain PA, Pariante CM. Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci. 2015;16:189–200. DOI: 10.1038/nrn3855. |
| [66] |
Gulyaeva NV. The neurochemistry of stress: the chemistry of the stress response and stress vulnerability. Neyrokhimiya. 2018;35(2):111–114. (In Russ.) DOI: 10.7868/S1027813318020012. |
| [67] |
Гуляева Н.В. Нейрохимия стресса: химия стресс-реактивности и чувствительности к стрессу. Нейрохимия. 2018;35(2):111–114. DOI: 10.7868/S1027813318020012. |
| [68] |
Voronezhskaya EE, Melnikova VI, Ivashkin EG. Monoamines as adaptive developmental regulators: phenomenon and mechanisms of action. Zhurnal vysshey nervnoy deyatelnosti im IP Pavlova. 2021;71(3):295–305. (In Russ.) DOI: 10.31857/S0044467721030126. |
| [69] |
Воронежская Е.Е., Мельникова В.И., Ивашкин Е.Г. Моноамины как адаптивные регуляторы развития: феномен и механизмы действия. Журнал высшей нервной деятельности им. И.П. Павлова. 2021;71(3):295–305. DOI: 10.31857/S0044467721030126. |
| [70] |
McEwen BS, Bowles NP, Gray JD. Mechanisms of stress in the brain. Nat Neurosci. 2015;18:1353–1363. DOI: 10.1038/nn.4086. |
| [71] |
Bakhchina AV. Psychophysiology of stress. In: Psikhofiziologiya. (Psychophysiology.) Textbook for universities. 5th edition. SPb.: Piter; 2022. р. 362–380. (In Russ.) |
| [72] |
Бахчина А.В. Психофизиология стресса. В кн.: Психофизиология. Учебник для вузов. 5-е изд. СПб.: Питер; 2022. с. 362–380. |
| [73] |
Semenkov VF, Karandashov VI, Mikhailova TA. Stress and human aging. Vestnik RAEN. 2011;(4):72–78. (In Russ.) EDN: TXIKWH. |
| [74] |
Семенков В.Ф., Карандашов В.И., Михайлова Т.А. Стресс и старение человека. Вестник РАЕН. 2011;(4):72–78. EDN: TXIKWH. |
| [75] |
Loseva EV. Psychosocial stress of overpopulation (crowding): Negative consequences for the human body and rodents. Integrativnaya fiziologiya. 2021;2(1):33–40. (In Russ.) DOI: 10.33910/2687-1270-2021-2-1-33-40. |
| [76] |
Лосева Е.В. Психосоциальный стресс перенаселённости (скученности): негативные последствия для организма человека и грызунов. Интегративная физиология. 2021;2(1):33–40. DOI: 10.33910/2687-1270-2021-2-1-33-40. |
| [77] |
Rakesh G, Morey RA, Zannas AS. Resilience as a translational endpoint in the treatment of PTSD. Mol Psychiatry. 2019;24:1268–1283. DOI: 10.1038/s41380-019-0383-7. |
| [78] |
Grayson M. Irritable bowel syndrome. Nature. 2016;533:101. DOI: 10.1038/533S101a. |
| [79] |
Naumova EL, Beloborodova EI, Burkovskaya VA, Kupriyanova IE. Exchange of serotonin and hydrocortisone in patients with irritated bowel syndrome. Vestnik of Saint Petersburg University. Medicine. 2012;11(4):52–55. (In Russ.) EDN: PLMSDF. |
| [80] |
Наумова Е.Л., Белобородова Э.И., Бурковская В.А., Куприянова И.Е. Обмен серотонина и кортизола у больных с синдромом раздражённого кишечника. Вестник Санкт-Петербургского университета. Медицина. 2012;11(4):52–55. EDN: PLMSDF. |
| [81] |
Enck P, Aziz Q, Barbara G. Irritable bowel syndrome. Nat Rev Dis Primers. 2016;2:16014. DOI: 10.1038/nrdp.2016.14. |
| [82] |
Cattaneo A, Cattane N, Begni V. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorder. Transl Psychiatry. 2016;6:e958. DOI: 10.1038/tp.2016.214. |
| [83] |
Vandael D, Gounko NV. Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimer’s disease and stress disorders. Transl Psychiatry. 2019;9:272. DOI: 10.1038/s41398-019-0581-8. |
| [84] |
Hill MN, Campolongo P, Yehuda R. Integrating endocannabinoid signaling and cannabinoids into the biology and treatment of posttraumatic stress disorder. Neuropsychopharmacology. 2018;43:80–102. DOI: 10.1038/npp.2017.162. |
Eco-Vector
/
| 〈 |
|
〉 |