Characteristics of immunocompetent cells in the testicles of different age group patients with COVID-19
Grigory A. Demyashkin , Dmitry V. Boldyrev , Matvey A. Vadyukhin , Lia N. Alieva , Elmar N. Shirinov
Kazan medical journal ›› 2024, Vol. 105 ›› Issue (4) : 533 -542.
Characteristics of immunocompetent cells in the testicles of different age group patients with COVID-19
BACKGROUND: There is an opinion that the new coronavirus infection COVID-19 can initiate the development of a local inflammatory reaction in the testicles, which leads to damage to spermatogenic epithelial cells and a decrease in the fertility of patients in the long term.
AIM: Morphofunctional assessment of immunocompetent cells in the testicles of patients with COVID-19 depending on age.
MATERIAL AND METHODS: Based on anamnestic, clinical and morphological data, groups of patients were formed, each of which included subgroups according to the age periodization of the World Health Organization: the first group of patients who died as a result of COVID-19 (n=109; average age 58±2.8 years) — young subgroup (n=19, age 18–44 years), middle-aged subgroup (n=37, age 45–59 years), elderly subgroup (n=53, age 60–74 years); second group (n=30, average age 49±2.3 years; autopsy material from the testicles of patients who died from causes unrelated to COVID-19, obtained outside the pandemic) — a subgroup of young people (n=10, age 18–44 years), middle-aged subgroup (n=10, age 45–59 years), elderly subgroup (n=10, age 60–74 years). Histological and immunohistochemical studies were carried out using primary antibodies to CD3, CD4, CD68, CD163, CD138 and statistical methods: Kolmogorov–Smirnov test, Student's t-test, Mann–Whitney U test and Fisher test.
RESULTS: All testicular samples from patients with COVID-19 revealed signs of viral orchitis and a significant decrease in the spermatogenesis index (in young people — 5.9±0.2% with p=0.02; in middle age — 5.1±0.2% with p=0.008; in the elderly — 3.6±0.1% at p=0.006) compared to the control group (6.8±0.3%), and in immunohistochemical studies — an increase in the number of T-lymphocytes (CD3+, CD4+), macrophages (CD68+, CD163+) and plasma cells (CD138+) in interstitial tissue. In addition, a significant decrease in the spermatogenesis index (3.6±0.1% in the elderly versus 5.9±0.2% in the young, p=0.007) and a decrease in the number of T-lymphocytes (CD3+, CD4+) and macrophages (CD68+, CD163+) was found in older versus younger patients with COVID-19.
CONCLUSION: In patients with COVID-19, an increase in the number of immunocompetent cells (CD3+, CD4+, CD68+, CD138+, CD163+) in the interstitial tissue of the testicles was found, especially pronounced in the elderly group.
testicles / CD / orchitis / COVID-19 / immunocompetent cells
| [1] |
Mohamed S, Saad K, Elgohary G, Abd El Haffez A, El-Aziz NA. Is COVID-19 a systemic disease? Coronaviruses. 2020;2(5):4–8. doi: 10.2174/2666796701999201216101914 |
| [2] |
Mohamed S., Saad K., Elgohary G., et al. Is COVID-19 a systemic disease? // Coronaviruses. 2020. Vol. 2, N. 5. P. 4–8. doi: 10.2174/2666796701999201216101914 |
| [3] |
Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533–534. doi: 10.1016/S1473-3099(20)30120-1 |
| [4] |
Dong E., Du H., Gardner L. An interactive web-based dashboard to track COVID-19 in real time // Lancet Infect Dis. 2020. Vol. 20, N. 5. P. 533–534. doi: 10.1016/S1473-3099(20)30120-1 |
| [5] |
El-Kassas M, Alboraie M, Elbadry M. Non-pulmonary involvement in COVID-19: A systemic disease rather than a pure respiratory infection. World J Clin Cases. 2023;11(3):493–505. doi: 10.12998/wjcc.v11.i3.493 |
| [6] |
El-Kassas M., Alboraie M., Elbadry M. Non-pulmonary involvement in COVID-19: A systemic disease rather than a pure respiratory infection // World J Clin Cases. 2023. Vol. 11, N. 3. P. 493–505. doi: 10.12998/wjcc.v11.i3.493 |
| [7] |
Askari H, Rabiei F, Lohrasbi F, Ghadir S, Ghasemi-Kasman M. The latest cellular and molecular mechanisms of COVID-19 on non-lung organs. Brain Sci. 2023;13(3):415. doi: 10.3390/brainsci13030415 |
| [8] |
Askari H., Rabiei F., Lohrasbi F., et al. The latest cellular and molecular mechanisms of COVID-19 on non-lung organs // Brain Sci. 2023. Vol. 13, N. 3. P. 415. doi: 10.3390/brainsci13030415 |
| [9] |
Yang L, Liu S, Liu J, Zhang Z, Wan X, Huang B. COVID-19: Immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther. 2020;5(1):1–8. doi: 10.1038/s41392-020-00243-2 |
| [10] |
Yang L., Liu S., Liu J., et al. COVID-19: Immunopathogenesis and immunotherapeutics // Signal Transduct Target Ther. 2020. Vol. 5, N. 1. P. 1–8. doi: 10.1038/s41392-020-00243-2 |
| [11] |
Sharma I, Kumari P, Sharma A, Saha SC. SARS-CoV-2 and the reproductive system: Known and the unknown. Middle East Fertil Soc J. 2021;26(1):1. doi: 10.1186/s43043-020-00046-z |
| [12] |
Sharma I., Kumari P., Sharma A., Saha S.C. SARS-CoV-2 and the reproductive system: Known and the unknown // Middle East Fertil Soc J. 2021. Vol. 26, N. 1. P. 1. doi: 10.1186/s43043-020-00046-z |
| [13] |
He Y, Wang J, Ren J, Zhao Y, Chen J, Chen X. Effect of COVID-19 on male reproductive system — a systematic review. Front Endocrinol. 2021;12:677701. doi: 10.3389/fendo.2021.677701 |
| [14] |
He Y., Wang J., Ren J., et al. Effect of COVID-19 on male reproductive system — a systematic review // Front Endocrinol. 2021. Vol. 12. P. 677701. doi: 10.3389/fendo.2021.677701 |
| [15] |
Donders GGG, Bosmans E, Reumers J, Donders F, Jonckheere J, Salembier G. Sperm quality and absence of SARS-CoV-2 RNA in semen after COVID-19 infection: A prospective, observational study and validation of the SpermCOVID test. Fertil Steril. 2022;117(2):287–296. doi: 10.1016/j.fertnstert.2021.10.022 |
| [16] |
Donders G.G.G., Bosmans E., Reumers J., et al. Sperm quality and absence of SARS-CoV-2 RNA in semen after COVID-19 infection: A prospective, observational study and validation of the SpermCOVID test // Fertil Steril. 2022. Vol. 117, N. 2. P. 287–296. doi: 10.1016/j.fertnstert.2021.10.022 |
| [17] |
Gong J, Zeng Q, Yu D, Duan YG. T lymphocytes and testicular immunity: A new insight into immune regulation in testes. Int J Mol Sci. 2020;22(1):57. doi: 10.3390/ijms220100576 |
| [18] |
Gong J., Zeng Q., Yu D., Duan Y.G. T lymphocytes and testicular immunity: A new insight into immune regulation in testes // Int J Mol Sci. 2020. Vol. 22, N. 1. P. 57. doi: 10.3390/ijms220100576 |
| [19] |
Baughn LB, Sharma N, Elhaik E, Sekulic A, Bryce AH, Fonseca R. Targeting TMPRSS2 in SARS-CoV-2 infection. Mayo Clin Proc. 2020;95(9):1989–1999. doi: 10.1016/j.mayocp.2020.06.018 |
| [20] |
Baughn L.B., Sharma N., Elhaik E., et al. Targeting TMPRSS2 in SARS-CoV-2 infection // Mayo Clin Proc. 2020. Vol. 95, N. 9. P. 1989–1999. doi: 10.1016/j.mayocp.2020.06.018 |
| [21] |
Lasiene K, Gasiliunas D, Juodziukyniene N, Dabuzinskiene A, Vitkus A, Zilaitiene B. Age-related morphological peculiarities of human testes. Folia Morphol. 2021;80(1):122–126. doi: 10.5603/FM.a2020.0033 |
| [22] |
Lasiene K., Gasiliunas D., Juodziukyniene N., et al. Age-related morphological peculiarities of human testes // Folia Morphol. 2021. Vol. 80, N. 1. P. 122–126. doi: 10.5603/FM.a2020.0033 |
| [23] |
Duarte-Neto AN, Teixeira TA, Caldini EG. Testicular pathology in fatal COVID-19: A descriptive autopsy study. Andrology. 2022;10(1):13–23. doi: 10.1111/andr.13073 |
| [24] |
Duarte-Neto A.N., Teixeira T.A., Caldini E.G. Testicular pathology in fatal COVID-19: A descriptive autopsy study // Andrology. 2022. Vol. 10, N. 1. P. 13–23. doi: 10.1111/andr.13073 |
| [25] |
Zhao S, Zhu W, Xue S, Han D. Testicular defense systems: Immune privilege and innate immunity. Cell Mol Immunol. 2014;11(5):428–437. doi: 10.1038/cmi.2014.38 |
| [26] |
Zhao S., Zhu W., Xue S., Han D. Testicular defense systems: Immune privilege and innate immunity // Cell Mol Immunol. 2014. Vol. 11, N. 5. P. 428–437. doi: 10.1038/cmi.2014.38 |
| [27] |
Kind S, Merenkow C, Büscheck F, Möller K, Dum D, Chirico V. Prevalence of syndecan-1 (CD138) expression in different kinds of human tumors and normal tissues. Dis Markers. 2019;2019:4928315. doi: 10.1155/2019/4928315 |
| [28] |
Kind S., Merenkow C., Büscheck F., et al. Prevalence of syndecan-1 (CD138) expression in different kinds of human tumors and normal tissues // Dis Markers. 2019. Vol. 2019. P. 4928315. doi: 10.1155/2019/4928315 |
| [29] |
Yang M, Chen S, Huang B, Zhong JM, Su H, Chen YJ. Pathological findings in the testes of COVID-19 patients: Clinical implications. Eur Urol Focus. 2020;6(5):1124–1129. doi: 10.1016/j.euf.2020.05.009 |
| [30] |
Yang M., Chen S., Huang B., et al. Pathological findings in the testes of COVID-19 patients: Clinical implications // Eur Urol Focus. 2020. Vol. 6, N. 5. P. 1124–1129. doi: 10.1016/j.euf.2020.05.009 |
| [31] |
Xie Y, Mirzaei M, Kahrizi MS, Shabestari AM, Riahi SM, Farsimadan M. SARS-CoV-2 effects on sperm parameters: A meta-analysis study. J Assist Reprod Genet. 2022;39(7):1555–1563. doi: 10.1007/s10815-022-02540-x |
| [32] |
Xie Y., Mirzaei M., Kahrizi M.S., et al. SARS-CoV-2 effects on sperm parameters: A meta-analysis study // J Assist Reprod Genet. 2022. Vol. 39, N. 7. P. 1555–1563. doi: 10.1007/s10815-022-02540-x |
| [33] |
Aksak T, Satar DA, Bağci R, Gültekin EO, Coşkun A, Demirdelen U. Investigation of the effect of COVID-19 on sperm count, motility, and morphology. J Med Virol. 2022;94(11):5201–5205. doi: 10.1002/jmv.27971 |
| [34] |
Aksak T., Satar D.A., Bağci R., et al. Investigation of the effect of COVID-19 on sperm count, motility, and morphology // J Med Virol. 2022. Vol. 94, N. 11. P. 5201–5205. doi: 10.1002/jmv.27971 |
| [35] |
Diagnostic testing for SARS-CoV-2: Interim guidance, 11 September 2020. World Health Organization. 2020. Available from: https://iris.who.int/handle/10665/334254 Accessed: Aug 02, 2023. |
| [36] |
Diagnostic testing for SARS-CoV-2: Interim guidance, 11 September 2020 // World Health Organization, 2020. Available from: https://iris.who.int/handle/10665/334254 Accessed: Aug 02, 2023. |
| [37] |
Kloping YP, Hidayatullah F, Rahman ZA, Chung E, Hakim L. Male reproductive tract involvement and sperm parameters in SARS-CoV-2 patients: A systematic review and meta-analysis. World J Men’s Health. 2022;41:538–557. doi: 10.5534/wjmh.220019 |
| [38] |
Kloping Y.P., Hidayatullah F., Rahman Z.A., et al. Male reproductive tract involvement and sperm parameters in SARS-CoV-2 patients: A systematic review and meta-analysis // World J Men’s Health. 2022. Vol. 41. P. 538–557. doi: 10.5534/wjmh.220019 |
| [39] |
Malki MI. COVID-19 and male infertility: An overview of the disease. Medicine (Baltimore). 2022;101(27):e29401. doi: 10.1097/MD.0000000000029401 |
| [40] |
Malki M.I. COVID-19 and male infertility: An overview of the disease // Medicine (Baltimore). 2022. Vol. 101, N. 27. P. e29401. doi: 10.1097/MD.0000000000029401 |
| [41] |
Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163+ macrophages in inflammatory and malignant diseases. Int J Mol Sci. 2020;21(15):5497. doi: 10.3390/ijms21155497 |
| [42] |
Skytthe M.K., Graversen J.H., Moestrup S.K. Targeting of CD163+ macrophages in inflammatory and malignant diseases // Int J Mol Sci. 2020. Vol. 21, N. 15. P. 5497. doi: 10.3390/ijms21155497 |
| [43] |
Strizova Z, Benesova I, Bartolini R. M1/M2 macrophages and their overlaps — myth or reality? Clin Sci (Lond). 2023;137(15):1067–1093. doi: 10.1042/CS20220531 |
| [44] |
Strizova Z., Benesova I., Bartolini R. M1/M2 macrophages and their overlaps — myth or reality? // Clin Sci (Lond). 2023. Vol. 137, N. 15. P. 1067–1093. doi: 10.1042/CS20220531 |
| [45] |
Shi X, Zhao H, Kang Y. The role of mononuclear phagocytes in the testes and epididymis. Int J Mol Sci. 2022;24(1):53. doi: 10.3390/ijms24010053 |
| [46] |
Shi X., Zhao H., Kang Y. The role of mononuclear phagocytes in the testes and epididymis // Int J Mol Sci. 2022. Vol. 24, N. 1. P. 53. doi: 10.3390/ijms24010053 |
| [47] |
Matzkin ME, Calandra RS, Rossi SP, Bartke A, Frungieri MB. Hallmarks of testicular aging: The challenge of anti-inflammatory and antioxidant therapies using natural and/or pharmacological compounds to improve the physiopathological status of the aged male gonad. Cells. 2021;10(11):3114. doi: 10.3390/cells10113114 |
| [48] |
Matzkin M.E., Calandra R.S., Rossi S.P., et al. Hallmarks of testicular aging: The challenge of anti-inflammatory and antioxidant therapies using natural and/or pharmacological compounds to improve the physiopathological status of the aged male gonad // Cells. 2021. Vol. 10, N. 11. P. 3114. doi: 10.3390/cells10113114 |
Eco-Vector
/
| 〈 |
|
〉 |