Effect of pharmacotherapy on the immune response in patients with COVID-19

Nadezhda I. Baranova , Liudmila A. Aschina , Alexandra I. Bolgova , Olga N. Lesina

Kazan medical journal ›› 2023, Vol. 104 ›› Issue (6) : 805 -812.

PDF (330KB)
Kazan medical journal ›› 2023, Vol. 104 ›› Issue (6) : 805 -812. DOI: 10.17816/KMJ322842
Theoretical and clinical medicine
research-article

Effect of pharmacotherapy on the immune response in patients with COVID-19

Author information +
History +
PDF (330KB)

Abstract

Background. The effect of pharmacotherapy used to treat patients with the new coronavirus infection COVID-19 on immune parameters after treatment has not been sufficiently studied.

Aim. To study the effectiveness of pharmacotherapy and evaluate its impact on the immune response in patients with COVID-19.

Material and methods. The subjects of the study were 98 patients with COVID-19 aged from 32 to 68 years who were treated at the Penza Regional Clinical Center for Specialized Types of Medical Care from November 2022 to March 2023. The average age of the patients was 50±18 years. Computed tomography revealed pneumonia in all patients (CT1–CT4). The outpatient observation group included patients with COVID-19 (n=32), who were characterized by a mild course of the disease, 36 patients with moderate severity of COVID-19, and 30 patients with severe and extremely severe disease. Patients with mild COVID-19 received molnupiravir as antiviral therapy, patients with moderate COVID-19 received favipiravir, and patients with severe and extremely severe COVID-19 received remdesivir. After treatment, 72 patients were examined on an outpatient basis 3–4 weeks after discharge from the hospital. In the blood of patients before and after treatment, the populations of T- and B-lymphocytes, the functional activity of T-lymphocytes, cytokine indicators — tumor necrosis factor α, interleukins-4, -10 and -18, interferon γ — in cell supernatants were studied. Statistical analysis of the groups was carried out according to Wilcoxon, differences were considered significantly significant at p <0.05.

Results. In the observation group (98 patients), in patients with mild disease (32 patients), recovery occurred in 31 (96.8%) people. With a moderate course of the disease, a favorable outcome with clinical and laboratory improvement was noted in 33 (91.7%) patients out of 36, and with a severe course of COVID-19 — in 7 (23.4%) patients out of 30, 5 (16.6%) patients died, in 18 (60.0%) people after the 10th day of therapy complications from the cardiovascular system in the form of heart attacks and strokes were noted. After treatment in patients with COVID-19, the immune system showed an increase in the relative number of lymphocytes (p=0.034171), indicators of cytotoxic CD3+CD8+ T cells (p=0.001090), spontaneous synthesis of interferon γ (p=0.003246), induced production of interleukin-18 (p=0.003278), decrease in the absolute number of leukocytes (p=0.004319) and induced synthesis of interleukin-10 (p=0.042439).

Conclusion. Regardless of the type of antiviral therapy administered, a high recovery rate was recorded in patients with mild and moderate disease compared with severe and extremely severe disease.

Keywords

pharmacotherapy / immune response / antiviral drugs / COVID-19

Cite this article

Download citation ▾
Nadezhda I. Baranova, Liudmila A. Aschina, Alexandra I. Bolgova, Olga N. Lesina. Effect of pharmacotherapy on the immune response in patients with COVID-19. Kazan medical journal, 2023, 104(6): 805-812 DOI:10.17816/KMJ322842

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu F, Zhao S, Yu B Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. DOI: 10.1038/s41586-020-2008-3.

[2]

Smirnov VS, Toto-lyan AA. Innate immunity in coronavirus infection. Russian journal of infection and immunity. 2020;10(2):259–268. (In Russ.) DOI: 10.15789/2220-7619-III-1440.

[3]

Смирнов В.С., Тотолян А.А. Врождённый иммунитет при коронавирусной инфекции. Инфекция и иммунитет. 2020;10(2):259–268. DOI: 10.15789/2220-7619-III-1440.

[4]

Kazimirskiy AN, Salmasi ZhM, Poryadin GV. Antiviral system of innate immunity: COVID-19 pathogenesis and treatment. Bulletin of Russian State Medical University. 2020;(5):5–14. (In Russ.) DOI: 10.24075/vrgmu.2020.054.

[5]

Казимирский А.Н., Салмаси Ж.М., Порядин Г.В. Антивирусная система врождённого иммунитета: патогенез и лечение COVID-19. Вестник РГМУ. 2020;(5):5–14. DOI: 10.24075/vrgmu.2020.054.

[6]

Pashchenkov MV, Khaitov MR. Immune response against epidemic coronaviruses. Immunologiya. 2020;41(1):5–18. (In Russ.) DOI: 10.33029/0206-4952-2020-41-1-5-18.

[7]

Пащенков М.В., Хаитов М.Р. Иммунный ответ против эпидемических коронавирусов. Иммунология. 2020;41(1):5–18. DOI: 10.33029/0206-4952-2020-41-1-5-18.

[8]

Abakushina EV. Immunologic aspects of coronavirus disease caused by SARS-CoV-2. Genes & Cells. 2020;15(3):14–21. (In Russ.) DOI: 10.23868/202011002.

[9]

Абакушина Е.В. Иммунологические аспекты коронавирусной болезни, вызванной SARS-CoV-2. Гены и клетки. 2020;15(3):14–21. DOI: 10.23868/202011002.

[10]

Frolova EV, Filippova LV, Uchevatkina AV, Ponomarenko VA, Borzova YuV, Shurpitskaya OA, Taraskina AE, Gaikovaya LB, Fedorenko AS, Gomonova VV, Latariia EL, Vasilyeva NV. Immunological features of patients with COVID-19 depending on the severity of the disease. Problemy meditsinskoy mikologii. 2021;23(1):3–13. (In Russ.) DOI: 10.24412/1999-6780-2021-1-3-13.

[11]

Фролова Е.В., Филиппова Л.В., Учеваткина А.В., Пономаренко В.А., Борзова Ю.В., Шурпицкая О.А., Тараскина А.Е., Гайковая Л.Б., Федоренко А.С., Гомонова В.В., Латария Э.Л., Васильева Н.В. Иммунологические особенности пациентов с COVID-19 в зависимости от степени тяжести заболевания. Проблемы медицинской микологии. 2021;23(1):3–13. DOI: 10.24412/1999-6780-2021-1-3-13.

[12]

Bilichenko TN. Risk factors, immunological mechanisms, and biological markers of the severe COVID-19 course (study iverview). Russian Medical Inquiry. 2021;5(5):237–244. (In Russ.) DOI: 10.32364/2587-6821-2021-5-5-237-244.

[13]

Биличенко Т.Н. Факторы риска, иммунологические механизмы и биологические маркёры тяжёлого течения COVID-19 (обзор исследований). РМЖ. Медицинское обозрение. 2021;5(5):237–244. DOI: 10.32364/2587-6821-2021-5-5-237-244.

[14]

Vremennye metodicheskie rekomendatsii “Profilaktika, diagnostika i lechenie novoy koronavirusnoy infektsii (COVID-19), version 17 ot 14.12.22”. (Temporary methodological recommendations “Prevention, diagnosis and treatment of a new coronavirus infection (COVID-19)”.) Ministry of Health of the Russian Federation; 2022. 260 p. (In Russ.)

[15]

Временные методические рекомендации "Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), version 17.14.12.22". Министерство здравоохранения Российской Федерации; 2022. 260 с.

[16]

Chen GL, Li XF, Dai XH, Li N, Cheng ML, Huang Z. Safety and immunogenicity of the SARS-CoV-2 ARCoV mRNA vaccine in Chinese adults: A randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Mic-robe. 2022;3(3):193–202. DOI: 10.1016/S2666-5247(21)00280-9.

[17]

Beigel JH, Tomashek KM, Dodd LE. Remdesivir improved time to recovery in adults hospitalized with COVID-19 and lower respiratory tract involvement. Ann Intern Med. 2020;173(2):JC4. DOI: 10.7326/ACPJ202007210-005.

[18]

Ashirmetov AKh, Mavlyanov IR, Mavlyanov ZI, Zharylkasynova GZh. COVID-19: well-known drugs, new opportunities. Health Risk Analysis. 2020;(4):170–180. (In Russ.) DOI: 10.21668/health.risk/2020.4.19.

[19]

Аширметов А.Х., Мавлянов И.Р., Мавлянов З.И., Жарылкасынова Г.Ж. COVID-19: известные препараты, новые возможности. Анализ риска здоровью. 2020;(4):170–180. DOI: 10.21668/health.risk/2020.4.19.

[20]

Khokhlov AL, Rybachkova YuV. The use of the new oral antiviral drug molnupiravir in the treatment of COVID-19 from a safety perspective. Kachestvennaya klinicheskaya praktika. 2022;(3):35–51. (In Russ.) DOI: 10.37489/2588-0519-2022-3-35-51.

[21]

Хохлов А.Л., Рыбачкова Ю.В. Применение нового перорального противовирусного препарата молнупиравира в лечении COVID-19 с позиции безопасности. Качественная клиническая практика. 2022;(3):35–51. DOI: 10.37489/2588-0519-2022-3-35-51.

[22]

Khaitov RM, Pinegin BV, Yarilin AA. Rukovodstvo po klinicheskoy immunologii. Diagnostika zabolevaniy immunnoy sistemy. Rukovodstvo dlya vrachey. (Diagnosis of diseases of the immune system. A guide for physicians.) M.: GEOTAR-Media; 2009. 352 p. (In Russ.)

[23]

Хаитов Р.М., Пинегин Б.В., Ярилин А.А. Руководство по клинической иммунологии. Диагностика заболеваний иммунной системы. Руководство для врачей. М.: ГЭОТАР-Медиа; 2009. 352 с.

[24]

Zurochka AV, Khaydukov SV, Kudryavtsev IV, Chereshnev VA. Protochnaya tsitometriya v biomeditsinskikh issledovaniyakh. (Flow cytometry in biomedical research.) Ekaterinburg: RIO Uro RAN; 2018. 720 p. (In Russ.)

[25]

Зурочка А.В., Хайдуков С.В., Кудрявцев И.В., Черешнев В.А. Проточная цитометрия в биомедицинских исследованиях. Екатеринбург: РИО Уро РАН; 2018. 720 с.

[26]

Simbirtsev AS. Tsitokiny v patogeneze i lechenii zabolevaniy cheloveka. (Cytokines in the pathogenesis and treatment of human diseases.) SPb.: Foliant; 2018. 512 p. (In Russ.)

[27]

Симбирцев А.С. Цитокины в патогенезе и лечении заболеваний человека. СПб.: Фолиант; 2018. 512 с.

[28]

Nasonov EL, Avdeeva AS. Interleukin-18 in immunoinflammatory rheumatic diseases and COVID-19. Rheumatology Science and Practice. 2022;60(2):195–204. (In Russ.) DOI: 10.47360/1995-4484-2022-195-204.

[29]

Насонов Е.Л., Авдеева А.С. Интерлейкин-18 при иммуновоспалительных ревматических заболеваниях и COVID-19. Научно-практическая ревматология. 2022;60(2):195–204. DOI: 10.47360/1995-4484-2022-195-204.

[30]

Arsentieva NA, Liubimova NE, Batsunov OK, Korobova ZR, Stanevich OV, Lebedeva AA, Vorobyov EA, Vorobyova SV, Kulikov AN, Lioznov DA, Sharapova MA, Pevtcov DE, Totolian AA. Plasma cytokines in patients with COVID-19 during acute phase of the disease and following complete recovery. Me-dical Immunology (Russia). 2021;23(2):311–326. (In Russ.) DOI: 10.15789/1563-0625-PCI-2312.

[31]

Арсентьева Н.А., Любимова Н.Е., Бацунов О.К., Коробова З.Р., Станевич О.В., Лебедева А.А., Воробьев Е.А., Воробьева С.В., Куликов А.Н., Лиознов Д.А., Шарапова М.А., Певцов Д.Э., Тотолян А.А. Цитокины в плазме крови больных COVID-19 в острой фазе заболевания и фазе полного выздоровления. Медицинская иммунология. 2021;23(2):311–326. DOI: 10.15789/1563-0625-PCI-2312.

[32]

Inviyaeva EV, Vtorushina VV, Drapkina YuS, Krechetova LV, Dolgushina NV, Khaidukov SV. Post-Gam-COVID-Vac combined vector vaccine cellular and humoral immune response. Russian journal of infection and immunity. 2022;12(6):1051–1060. (In Russ.) DOI: 10.15789/2220-7619-PCV-1975.

[33]

Инвияева Е.В., Вторушина В.В., Драпкина Ю.С., Кречетова Л.В., Долгушина Н.В., Хайдуков С.В. Клеточный и гуморальный иммунный ответ после введения комбинированной векторной вакцины Гам-Ковид-Вак. Инфекция и иммунитет. 2022;12(6):1051–1060. DOI: 10.15789/2220-7619-PCV-1975.

Funding

Исследование выполнено при финансовой поддержке государственного задания «Разработка персонифицированных алгоритмов прогнозирования тяжёлых форм COVID-19 на основе иммуногенетических биомаркёров с целью оптимизации патогенетической терапии и улучшения исходов заболевания» №123021300244-8 от 13.02.2023

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (330KB)

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/