Indicators of lipid peroxidation and the activity of antioxidant system enzymes as predictors of the development of metabolic disorders in primary obesity
T V Nikishova , I A Kurnikova
Kazan medical journal ›› 2021, Vol. 102 ›› Issue (5) : 765 -772.
Indicators of lipid peroxidation and the activity of antioxidant system enzymes as predictors of the development of metabolic disorders in primary obesity
Aim. To assess the effectiveness of indicators of lipid peroxidation and the activity of antioxidant system enzymes in the early diagnosis of metabolic disorders.
Methods. The study included 269 women of fertile age with primary obesity. The control group consisted of 35 women. The clinical examination included identification of the type of obesity, whole-body fat percentage, the level of glycemia and the index of insulin resistance, biochemical markers of lipids, hormones (leptin and insulin), malondialdehyde and enzyme activity (peroxidase and catalase). The statistical significance of the differences was determined by using the inversion test. Spearman's rank correlation coefficient was used to assess the degree of relationship between quantitative characteristics, and scatter diagrams were used to compare two variables (Statistica software version 10.0).
Results. A statistically significant increase in basal and stimulated immunoreactive insulin was found in obese patients compared with the controls (p <0.01). Stimulated immunoreactive insulin levels, insulin resistance score (HOMA-IR) and the level of leptin in the group of patients with android obesity was higher than in the group with gynoid obesity (p <0.01). The relationship between the concentration of serum malondialdehyde and whole-body fat percentage was found to be more significant (r=0.412; p <0.001) than the relationship with the type of obesity (r=0.257; p <0.01). Positive correlations were found between serum malondialdehyde and insulin (r=0.35; p <0.001) and leptin (r=0.32; p <0.001) levels. The relationship between the concentration of serum malondialdehyde and the activity of enzyme systems was also noted. The activity of lipid peroxidation was higher in the group of patients with android obesity (malondialdehyde >3.3 μmol/L) compared with the group of patients with gynoid obesity. In the same group, a higher activity of enzyme systems was noted.
Conclusion. An increase in the concentration of serum malondialdehyde and the activity of enzyme systems should be considered as indicators of a high risk of developing metabolic syndrome.
obesity / metabolic syndrome / lipid peroxidation / oxidative stress / malonic dialdehyde / peroxidase / catalase
| [1] |
World Health Organization. Obesity. https://www.euro.who.int/en/health-topics/noncommunicable-diseases/obesity/obesity (access date: 14.03.2021). |
| [2] |
Ametov A.S., Pashkova E.Yu., Ramazanova Z.D., Darsigova M.N. Obesity as a non-infectious epidemic of the XXI century. Modern ideas about the pathogenesis, risks and approaches to pharmacotherapy. Endokrinologiya: novosti, mneniya, obuchenie. 2019; 8 (2): 57–66. (In Russ.) |
| [3] |
Аметов А.С., Пашкова Е.Ю., Рамазанова З.Д., Дарсигова М.Н. Ожирение как неинфекционная эпидемия XXI века. Современные представления о патогенезе, рисках и подходах к фармакотерапии. Эндокринология: новости, мнения, обучение. 2019; 8 (2): 57–66. |
| [4] |
Bray G.A., Heisel W.E., Afshin A., Jensen M.D., Dietz W.H., Long M., Kushner R.F., Daniels S.R., Wadden T.A., Tsai A.G., Hu F.B., Jakicic J.M., Ryan D.H., Wolfe B.M., Inge T.H. The science of obesity management: an Endocrine Society Scientific statement. Endocr. Rev. 2018; 39 (2): 79–132. DOI: 10.1210/er.2017-00253. |
| [5] |
Kopp W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab. Syndr. Obes. 2019; 12: 2221–2236. DOI: 10.2147/dmso.s216791. |
| [6] |
Vague J. Sexual differentiation; factor determining forms of obesity. Presse Med. 1947; 55 (30): 339. |
| [7] |
Shmeleva J.S., Zgurskaya A.S. Obesity and type 2 diabetes. Sinergia nauk. 2019; (36): 404–409. (In Russ.) |
| [8] |
Шмелёва Ю.С., Згурская А.С. Ожирение и сахарный диабет 2 типа. Синергия наук. 2019; (36): 404–409. |
| [9] |
Ostroumova O.D., Goloborodova I.V., Fomina V.M. Cardiovascular risk in type 2 diabetes patients. Kardiovaskularnaya terapia i profilaktika. 2018; 17 (4): 81–94. (In Russ.) DOI: 10.15829/1728-8800-2018-4-81-94. |
| [10] |
Остроумова О.Д., Голобородова И.В., Фомина В.М. Сердечно-сосудистые риски у больных сахарным диабетом 2 типа. Кардиоваск. терап. и профил. 2018; 17 (4): 81–94. DOI: 10.15829/1728-8800-2018-4-81-94. |
| [11] |
Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am. J. Clin. Nutr. 1956; 4 (1): 20–34. DOI: 10.1093/ajcn/4.1.20. |
| [12] |
McCracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018; 36 (1): 14–20. DOI: 10.1016/j.clindermatol.2017.09.004. |
| [13] |
Matsuzawa Y., Funahashi T., Nakamura T. The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J. Atheroscler. Thromb. 2011; 18 (8): 629–639. DOI: 10.5551/jat.7922. |
| [14] |
Kramer C.K., Zinman B., Retnakaran R. Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Ann. Intern. Med. 2013; 159 (11): 758–769. DOI: 10.7326/0003-4819-159-11-201312030-00008. |
| [15] |
Bell J.A., Kivimaki M., Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta‐analysis of prospective cohort studies. Obes. Rev. 2014; 15 (6): 504–515. DOI: 10.1111/obr.12157. |
| [16] |
Seryogina D.S., Nikolayenkov I.P., Kuzminykh T.U. Obesity represents a strong pathogenetic link with the pathology of pregnancy and childbirth. Zhurnal akusherstva i zhenskikh bolezney. 2020; 69 (2): 73–82. (In Russ.) DOI: 10.17816/JOWD69273-82. |
| [17] |
Серёгина Д.С., Николаенков И.П., Кузьминых Т.У. Ожирение — ведущее патогенетическое звено патологического течения беременности и родов. Ж. акушерства и женских болезней. 2020; 69 (2): 73–82. DOI: 10.17816/JOWD69273-82. |
| [18] |
Pinkhasov B.B. Pathogenetic features of primary obesity and its types in women of reproductive age. Mezhdunarodnyy endokrinologicheskiy zhurnal. 2011; (8): 13–26. (In Russ.) |
| [19] |
Пинхасов Б.Б. Патогенетические особенности первичного ожирения и его типов у женщин репродуктивного возраста. Международ. эндокринол. ж. 2011; (8): 13–26. |
| [20] |
Hill J.H., Solt C., Foster M.T. Obesity associated disease risk: the role of inherent differences and location of adipose depots. Horm. Mol. Biol. Clin. Investig. 2018; 33 (2): 7–9. DOI: 10.1515/hmbci-2018-0012. |
| [21] |
Kuzmenko D.I., Udintsev S.N., Klimentyeva T.K., Serebrov V.Yu. Oxidative stress in adipose tissue as a primary link in pathogenesis of insulin resistance. Biomeditsinskaya khimiya. 2016; 62 (1): 14–21. (In Russ.) DOI: 10.18097/pbmc20166201014. |
| [22] |
Кузьменко Д.И., Удинцев С.Н., Климентьева Т.К., Серебров В.Ю. Окислительный стресс жировой ткани как первичное звено патогенеза резистентности к инсулину. Биомед. химия. 2016; 62 (1): 14–21. DOI: 10.18097/pbmc20166201014. |
| [23] |
Gaschler M.M., Stockwell B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 2017; 482 (3): 419–425. DOI: 10.1016/j.bbrc.2016.10.086. |
| [24] |
Gavrilov V.B., Gavrilova A.R., Khmara N.F. Changes in diene conjugates in plasma by ultraviolet absorption of heptane and isopropyl extracts. Laboratornoe delo. 1988; (2): 60–64. (In Russ.) |
| [25] |
Гаврилов В.Б., Гаврилова А.Р., Хмара Н.Ф. Изменение диеновых конъюгатов в плазме по ультрафиолетовому поглощению гептановых и изопропильных экстрактов. Лабораторное дело. 1988; (2): 60–64. |
| [26] |
Gavrilov V.B., Gavrilova A.R., Mazhul’ L.M. Methods of determining lipid peroxidation products in the serum using a thiobarbituric acid test. Voprosy meditsinskoy khimii 1987; 33 (1): 118–122. (In Russ.) |
| [27] |
Гаврилов В.Б., Гаврилова А.Р., Мажуль Л.М. Анализ методов определения продуктов перекисного окисления липидов в сыворотке крови по тесту с тиобарбитуровой кислотой. Вопр. мед. химии. 1987; 33 (1): 118–122. |
| [28] |
Korolyuk M.A. Method for determination of catalase activity. Laboratornoe delo. 1988; (1): 16–19. (In Russ.) |
| [29] |
Королюк М.А. Метод определения активности каталазы. Лабораторное дело. 1988; (1): 16–19. |
| [30] |
Popov T.A., Neykovskaya L.I. Method for determination of blood peroxidase activity. Gigiena i sanitariya. 1971; (10): 89–91. (In Russ.) |
| [31] |
Попов Т.А., Нейковская Л.И. Метод определения пероксидазной активности крови. Гигиена и санитария. 1971; (10): 89–91. |
| [32] |
Bulatova I.A., Shchekotova A.P., Karlysheva K.N. Features of oxidative stress in metabolic syndrome with fatty liver disease. Sovremennye. problemy nauki i obrazovaniya. 2014; (2): 307. (In Russ.) |
| [33] |
Булатова И.А., Щёкотова А.П., Карлышева К.Н. Особенности оксидативного стресса при метаболическом синдроме с жировым поражением печени. Соврем. пробл. науки и образования. 2014; (2): 307. |
| [34] |
Povarova O.V., Gorodetskaya E.A., Kalenikova E.I., Medvedev O.S. Metabolic markers and oxidative stress in children’s obesity pathogenesis. Rossiyskiy vestnik perinatologii i pediatrii. 2020; 65 (1): 22–29. (In Russ.) DOI: 10.21508/1027-4065-2020-65-1-22-29. |
| [35] |
Поварова О.В., Городецкая Е.А., Каленикова Е.И., Медведев О.С. Метаболические маркёры и окислительный стресс в патогенезе ожирения у детей. Рос. вестн. перинатол. и педиатрии. 2020; 65 (1): 22–29. DOI: 10.21508/1027-4065-2020-65-1-22-29. |
| [36] |
Manna P., Jain S.K. Obesity, oxidative stress, adipose tissue dysfunction and the associated health risks: causes and therapeutic strategies. Metab. Syndr. Relat. Disord. 2015; 10 (13): 423–444. DOI: 10.1089/met.2015.0095. |
| [37] |
Taksali S.E., Caprio S., Dziura J., Dufour S., Calh A.M., Goodman T.R., Papademetris X., Burgert T.S., Pierpont B.M., Savoye M., Shaw M., Seyal A.A., Weiss R. High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype. Diabetes. 2008; 57 (2): 367–371. DOI: 10.2337/db07-0932. |
| [38] |
Vona R., Gambardella L., Cittadini C., Straface E., Pietraforte D. Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid. Med. Cell. Longev. 2019; 2019: 8267234. DOI: 10.1155/2019/8267234. |
Eco-Vector
/
| 〈 |
|
〉 |