Effect of diet-induced hypercholesterolemia on metabolic processes in the heart, liver, and pancreas in rats
Z I Mikashinovich , A V Romashenko , I A Semenets
Kazan medical journal ›› 2021, Vol. 102 ›› Issue (5) : 663 -668.
Effect of diet-induced hypercholesterolemia on metabolic processes in the heart, liver, and pancreas in rats
Aim. To analyze the biochemical changes in the cells of the heart muscle, liver and pancreas, as well as to establish their pathogenetic significance in diet-induced experimental hypercholesterolemia.
Methods. The study was conducted on 65 outbred male rats. During the experiment, the animals were divided into groups: the first (control, n=30) — animals that were kept on a general vivarium diet; the second (experimental, n=35) — animals with diet-induced hypercholesterolemia for three months by keeping on a special diet. At the end of the experiment, the concentrations of pyruvic acid, lactate, reduced glutathione, the activity of glutathione reductase, and glutathione peroxidase were determined in the tissues by using biochemical methods. The Student's t-test was used for the experimental data of the samples after normality testing.
Results. The analysis of energy metabolism indicators in animals with hypercholesterolemia relative to the control group revealed a lower level of pyruvic acid in the heart muscle (0.29±0.03 mmol/mg protein; p ≤0.05) and liver (0.25±0.02 mmol/mg protein; p >0.001). A significantly higher lactate level was recorded in all tissues, most pronounced in the liver (6.73±0.6 mmol/mg protein; p ≤0.001). The results obtained indicate the predominance of the anaerobic glycolysis in the tissues and the accumulation of incomplete-oxidation products. The study of the key glutathione-linked enzymes in animals with hypercholesterolemia relative to the control showed a lower activity of glutathione reductase in the pancreas — 0.52±0.05 mmol/mg protein/min (p ≤0.001), as well as its higher activity in the liver — 0.297±0.03 mmol/mg protein/min (p ≤0.001) and heart — 13.58±1.4 mmol/mg protein/min (p >0.001). The activity of glutathione peroxidase and reduced glutathione in all organs remained practically unchanged, or the differences were insignificant. This trend indicates a violation of the antioxidant defense system and oxidative stress.
Conclusion. Changes in the metabolic link of adaptive-compensatory responses in the cells of the heart muscle, liver, and, most pronounced in the pancreas, indicate the role of the pancreas as a “target organ” in the pathogenesis of diet-induced hypercholesterolemia.
hypercholesterolemia / heart muscle / liver / pancreas
| [1] |
Akhmedzhanov N.M., Nebieridze D.V., Safaryan A.S., Vygodin V.A., Shuraev A.Yu., Tkacheva O.N., Lishuta A.S. Analysis of hypercholesterolemia prevalence in the outpatient practice (according to the ARGO study): part I. Rational Pharmacotherapy in Cardiology. 2015; 11 (3): 253–260. (In Russ.) DOI: 10.20996/1819-6446-2015-11-3-253-260. |
| [2] |
Ахмеджанов Н.М., Небиеридзе Д.В., Сафарян А.С., Выгодин В.А., Шураев А.Ю., Ткачёва О.Н., Лишута А.С. Анализ распространённости гиперхолестеринемии в условиях амбулаторной практики (по данным исследования арго): часть I. Рационал. фармакотерап. в кардиол. 2015; 11 (3): 253–260. DOI: 10.20996/1819-6446-2015-11-3-253-260. |
| [3] |
Yachmeneva M.P., Ragino Yu.I. The role of hyperlipidemia and hyperglicemia in the development of coronary heart disease in young population. Ateroscleroz. 2018; 14 (1): 38–42. (In Russ.) DOI: 10.15372/ATER20180105. |
| [4] |
Ячменёва М.П., Рагино Ю.И. Роль гиперлипидемии и гипергликемии в развитии ишемической болезни сердца в молодой популяции. Атеросклероз. 2018; 14 (1): 38–42. DOI: 10.15372/ATER20180105. |
| [5] |
Karam I., Yang M., Li J. induce hyperlipidemia in rats using high fat diet investigating blood lipid and histopathology. J. Hematol. Blood Dis. 2018; 4 (1): 104. DOI: 10.15744/2455-7641.4.104. |
| [6] |
Aronov D.M., Lupapov V.P. Atherosclerosis and coronary heart disease: some aspects of pathogenesis. Ateroskleroz i dislipidemii. 2011; (1): 48–56. (In Russ.) |
| [7] |
Аронов Д.М., Лупапов В.П. Некоторые аспекты патогенеза атеросклероза. Атеросклероз и дислипидемии. 2011; (1): 48–56. |
| [8] |
Babakova E.Yu., Trishina V.V., Tryasunova M.A. The relationship between biochemical changes and the risk of ischemic stroke. Smolenskiy meditsinskiy al'manakh. 2015; (1): 58–59. (In Russ.) |
| [9] |
Бабакова Е.Ю., Тришина В.В., Трясунова М.А. Взаимосвязь биохимических сдвигов и риска развития ишемического инсульта. Смоленский мед. альманах. 2015; (1): 58–59. |
| [10] |
Gimaletdinova I.A., Amirov N.B., Absalyamova L.R. Liver, non-alcoholic fatty liver disease and dyslipidemia. Is there a connection? The Bulletin of Contemporary Clinical Medicine. 2020; 13 (6): 68–74. (In Russ.) DOI: 10.20969/VSKM.2020.13(6).68-74. |
| [11] |
Гималетдинова И.А., Амиров Н.Б., Абсалямова Л.Р. Печень, неалкогольная жировая болезнь печени и дислипидемия. Есть ли связь? Вестн. соврем. клин. мед. 2020; 13 (6): 68–74. DOI: 10.20969/VSKM.2020.13(6).68-74. |
| [12] |
Tanaka Y., Ono M., Miyago M., Suzuki T., Miyazaki Y., Kawano M., Asahina M., Shirouchi B., Imaizumi K., Sato M. Low utilization of glucose in the liver causes diet-induced hypercholesterolemia in exogenously hypercholesterolemic rats. PLoS One. 2020; 15 (3): e0229669. DOI: 10.1371/journal.pone.0229669. |
| [13] |
Otunola G.A., Oloyede O.B., Oladiji A.T., Afolayan A.J. Selected spices and their combination modulate hypercholesterolemia-induced oxidative stress in experimental rats. Biol. Res. 2014; 47: 5. DOI: 10.1186/0717-6287-47-5. |
| [14] |
Serdyukov D.Y., Gordienko A.V., Saifullin R.F., Sapozhnikov T.V., Efimov O.I. Liver as target organ of the metabolic syndrome and lipid distress syndrome. Zdorov'e. Meditsinskaya ekologiya. Nauka. 2016; (4): 37–44. (In Russ.) DOI: 10.18411/hmes.d-2016-152. |
| [15] |
Сердюков Д.Ю., Гордиенко А.В., Сайфуллин Р.Ф., Сапожникова Т.В., Ефимов О.И. Печень как орган-мишень при метаболическом синдроме и липидном дистресс-синдроме. Здоровье. Мед. экология. Наука. 2016; (4): 37–44. DOI: 10.18411/hmes.d-2016-152. |
| [16] |
Klyueva N.N., Okunevich I.V., Parfenova N.S., Belova E.V., Ageeva E.V. Effect of lipid-lowering activity of the natural original enzyme preparation in the experiment. Biomeditsinskaya khimiya. 2019; 65 (3): 227–230. (In Russ.) DOI: 10.18097/PBMC20196503227. |
| [17] |
Клюева Н.Н., Окуневич И.В., Парфёнова Н.С., Белова Е.В., Агеева Е.В. Экспериментальные данные о гиполипидемической активности отечественного ферментного препарата природного происхождения холестериноксидазы. Биомед. химия. 2019; 65 (3): 227–230. DOI: 10.18097/PBMC20196503227. |
| [18] |
Nepomnyashchikh L.M., Lushnikova E.L., Polyakov E.L., Molodykh O.P., Klinnikova M.G., Russkikh G.S., Poteryaeva O.N., Nepomnyashchikh R.D., Pichigin V.I. Structural changes in the myocardium and serum lipid spectrum in experimental hypercholesterolemia and hypothyroidism. Bulletin of experimental biology and medicine. 2013; 155: 692–696. DOI: 10.1007/s10517-013-2228-8. |
| [19] |
Непомнящих Л.М., Лушников Е.Л., Поляков Е.Л., Молодых О.П., Клинникова М.Г., Русских Г.С., Потеряева О.Н., Непомнящих Р.Д., Пичигин В.И. Структурные реакции миокарда и липидный спектр сыворотки крови при моделировании гиперхолестеринемии и гипотиреоза. Бюлл. эксперим. биол. и мед. 2013; 155 (5): 647–652. DOI: 10.1007/s10517-013-2228-8. |
| [20] |
Mikashinovich Z.I., Belousova E.S., Semenets I.A., Romashenko A.V., Kantariya A.V. Modeling essential hypercholesterolemia. Patent for invention RF No. 2733693. Bulletin No. 28 issued at 16.03.2020. (In Russ.) |
| [21] |
Микашинович З.И., Белоусова Е.С., Семенец И.А., Ромашенко А.В., Кантария А.В. Способ моделирования эссенциальной гиперхолестеринемии. Патент на изобретение РФ №2733693. Бюлл. №28 от 16.03.2020. |
| [22] |
Kalinina E.V., Chernov N.N., Aleid R., Novichkova M.D., Saprin A.N., Berezov T.T. Current views of antioxidative activity of glutathione and glutathione-depending enzymes. Vestnik Rossiyskoy akademii meditsinskikh nauk. 2010; (3): 46–54. (In Russ.) |
| [23] |
Калинина Е.В., Чернов Н.Н., Алеид Р., Новичкова М.Д., Саприн А.Н., Березов Т.Т. Современные представления об антиоксидантной роли глутатиона и глутатионзависимых ферментов. Вестн. РАМН. 2010; (3): 46–54. |
| [24] |
Spravochnik po kliniko-biokhimicheskom issledovaniyam i laboratornoy diagnostike. (Reference book on clnical and biochemical research and laboratory diagnostics.) Ed. by V.S. Kamyshnikova. M.: MEDpress-inform. 2009; 896 р. (In Russ.) |
| [25] |
Справочник по клинико-биохимическим исследованиям и лабораторной диагностике. Под ред. В.С. Камышникова. М.: МЕДпресс-информ. 2009; 896 с. |
| [26] |
Spravochnik po laboratornym metodam issledovaniy. (Laboratory research methods handbook.) Ed. by L.A. Danilovoy. SPb.: Piter. 2003; 736 р. (In Russ.) |
| [27] |
Справочник по лабораторным методам исследований. Под ред. Л.А. Даниловой. СПб.: Питер. 2003; 736 с. |
| [28] |
Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959; 82 (1): 70–77. DOI: 10.1016/0003-9861(59)90090-6. |
| [29] |
Yusupova L.B. On increasing the accuracy of determining the activity of erythrocyte glutathione reductase. Laboratornoe delo. 1989; (4): 19–21. (In Russ.) |
| [30] |
Юсупова Л.Б. О повышении точности определения активности глутатионредуктазы эритроцитов. Лаб. дело. 1989; (4): 19–21. |
| [31] |
Lowry O.H., Rosebrouph N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951; 193 (1): 265–275. DOI: 10.1016/S0021-9258(19)52451-6. |
| [32] |
Mel'nik A.A. The role of lactate in clinical practice. Novosti meditsiny i farmatsii. 2019; (4): 686. (In Russ.) |
| [33] |
Мельник А.А. Роль лактата в клинической практике. Новости медицины и фармации. 2019; (4): 686. |
| [34] |
Ovchinnikov A.G., Arefieva T.I., Potekhina A.V., Filatova A.Yu., Ageev F.T., Boytsov S.A. The molecular and cellular mechanisms associated with a microvascular inflammation in the pathogenesis of heart failure with preserved ejection fraction. Acta Naturae. 2020; 12 (2): 40–51. DOI: 10.32607/actanaturae.11154. |
| [35] |
Овчинников А.Г., Арефьева Т.И., Потехина А.В., Филатова А.Ю., Агеев Ф.Т., Бойцов С.А. Молекулярные и клеточные механизмы, ассоциированные с микрососудистым воспалением в патогенезе сердечной недостаточности с сохранённой фракцией выброса. Acta Naturae. 2020; 12 (2): 40–51. DOI: 10.32607/actanaturae.11154. |
| [36] |
Storozhuk P.G. Biokhimicheskaya priroda avtomatizma serdtsa, ego svyaz' s nervnoy sistemoy i ekstrapolyatsiya khimicheskikh protsessov na elementy kardiogrammy. (The biochemical nature of the automatism of the heart, its connection with the nervous system and the extrapolation of chemical processes to the elements of the cardiogram.) Krasnodar: Izd-vo GBOU VPO KubGMU. 2011; 104 р. (In Russ.) |
| [37] |
Сторожук П.Г. Биохимическая природа автоматизма сердца, его связь с нервной системой и экстраполяция химических процессов на элементы кардиограммы. Краснодар: Изд-во ГБОУ ВПО КубГМУ. 2011; 104 с. |
Eco-Vector
/
| 〈 |
|
〉 |