The glutathione system in bone tissue under the action of copper-zinc ore components and antioxidants administration

G R Kuramshina , F Kh Kamilov

Kazan medical journal ›› 2021, Vol. 102 ›› Issue (2) : 199 -205.

PDF (296KB)
Kazan medical journal ›› 2021, Vol. 102 ›› Issue (2) : 199 -205. DOI: 10.17816/KMJ2021-199
Experimental medicine
research-article

The glutathione system in bone tissue under the action of copper-zinc ore components and antioxidants administration

Author information +
History +
PDF (296KB)

Abstract

Aim. To study changes in the glutathione system in bone tissue during chronic intoxication with elements contained in copper-zinc pyrite ore and antioxidant vitamin administration.

Methods. 36 mature male white rats were divided into three groups (control, comparison, experimental). The rats of the experimental and comparison groups received intragastrically copper-zinc pyrite ore powder in a 2% starch solution as a suspension at a dosage of 60 mg/100 g bodyweight daily for three months. During the last month, the experimental group received an antioxidant vitamin preparation (the complex of vitamins with a trace element) containing α-tocopherol, β-carotene, ascorbic acid and selenium. The content of reduced glutathione, free thiol groups in proteins, the activity of glutathione peroxidase, glutathione transferase, glutathione reductase, gamma-glutamyl transferase, and glucose-6-phosphate dehydrogenase were determined in homogenates derived from femoral epiphysis. The statistical analysis of the results was performed using Statistica 6.0 software. The median (Me) and percentiles (Q1 and Q2) were calculated, a non-parametric Mann–Whitney U test was carried out to compare study groups.

Results. Chronic intoxication with elements contained in copper-zinc pyrite ore causes impairment of the glutathione system in bone tissue. Intoxicated rats showed a decrease in the reduced glutathione content to 71.9% (р=0.014) and free sulfhydryl groups of proteins to 77.8% (р=0.0143), inhibition of glutathione-dependent antioxidant enzymes activities, and disruption of the glutathione reduction system in tissues, compared to the control group. Antioxidant vitamin administration increased the levels of reduced glutathione and free thiol groups of proteins, activated the enzymes involved in the glutathione system: the reduced glutathione content increased to 94.8% (p=0.2132), glutathione peroxidase activity to 85.7% (p=0.0432), glutathione transferase — up to 94.3% (p=0.5251), glutathione reductase — up to 86.1% (p=0.0442) compared to the control group.

Conclusion. Chronic intoxication with metals contained in copper-zinc pyrite ore leads to decreasing the content of reduced glutathione and free thiol groups of proteins in bones along with reducing glutathione reductase and glucose-6-phosphate dehydrogenase activities, inhibition of glutathione peroxidase and glutathione transferase; an antioxidant vitamin administration increases the activity of glutathione reduction enzymes in bone tissue, the content of reduced glutathione and free sulfhydryl groups of proteins, the activities of glutathione peroxidase and glutathione transferase.

Keywords

bone tissue / glutathione system / effect of copper-zinc ore elements / antioxidant drug

Cite this article

Download citation ▾
G R Kuramshina,F Kh Kamilov. The glutathione system in bone tissue under the action of copper-zinc ore components and antioxidants administration. Kazan medical journal, 2021, 102(2): 199-205 DOI:10.17816/KMJ2021-199

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kulinsky V.I., Kolesnichenko L.S. Glutathione system. I. Synthesis, glutathione transferases, glutathione peroxidase. Biomeditsinskaya khimiya. 2009; 55 (3): 255–277. (In Russ.)

[2]

Кулинский В.И., Колесниченко Л.С. Система глутатиона. I. Синтез, транспорт глутатионтрансферазы, глутатионпероксидазы. Биомед. химия. 2009; 55 (3): 255–277.

[3]

Aquilano K., Baldelli S., Ciriolo M.K. Glutatione: new roles in redox signaling for an old antioxidant. Front. Pharmacol. 2014; 5: 196. DOI: 10.3389/f.phor.2014.00196.

[4]

Menshchikova E.B., Lankin V.Z., Zenkov N.K., Bondar I.A., Krugovykh N.F., Trufakin V.A. Okislitel'nyy stress. Prooksidanty i antioksidanty. (Oxidative stress. Prooxidants and antioxidants.) M.: Slovo. 2006; 556 р. (In Russ.)

[5]

Меньщикова Е.Б., Ланкин В.З., Зенков Н.К., Бондарь И.А., Круговых Н.Ф., Труфакин В.А. Окислительный стресс. Прооксиданты и антиоксиданты. М.: Слово. 2006; 556 c.

[6]

Toksikologicheskaya khimiya. Metabolizm i analiz toksikantov. (Toxicological chemistry. Metabolism and analysis of toxicants.) Ed. by N.I. Kaletina. M.: GEOTAR-Media. 2008; 1016 р. (In Russ.)

[7]

Токсикологическая химия. Метаболизм и анализ токсикантов. Под ред. Н.И. Калетиной. М.: ­ГЭОТАР-Медиа. 2008; 1016 с.

[8]

Agletdinov E.F., Nurgaleev N.V., Farshatova E.R., Tairova E.I., Altynbaeva A.I., Ivanova G.V., Kamilov F.Kh., Teregulova Z.S., Nikonorov A.A. The impact of copper-zinc pyritic ore’s polymetallic dust on mineral metabolism and bone tissue. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2011; (15): 15–18. (In Russ.)

[9]

Аглетдинов Э.Ф., Нургалеев Н.В., Фаршатова Е.Р., Таирова Э.И. Влияние полиметаллической пыли медно-цинковых колчеданных руд на состояние минерального обмена и костной ткани. Вестн. Оренбургского гос. ун-та. 2011; (15): 15–18.

[10]

Trofimchuk A.A., Kabirova M.F., Gulyaeva O.A., Karimova L.K., Salyakhova G.A. Assessment of risk of development of diseases of the oral cavity in the employees of mining and processing works occupied with production and processing of copper-zinc ores. Uralskiy meditsinskiy zhurnal. 2018; (4): 52–54. (In Russ.) DOI: 10.25694/URMJ.2018.04.039.

[11]

Трофимчук А.А., Кабирова М.Ф., Гуляева О.А., Каримова Л.К., Саляхова Г.А Оценка риска развития заболеваний полости рта у работников горно-обогатительного комбината, занятых добычей и переработкой медно-цинковых руд. Уральский мед. ж. 2018; (4): 52–54. DOI: 10.25694/URMJ.2018.04.039.

[12]

Karimova L.K., Serebryakov P.V., Shaikhlislamova E.R., Yatsyna I.V. Professional'nye riski narusheniya zdorov'ya rabotnikov, zanyatykh dobychey i pererabotkoy polimetallicheskikh rud. (Professional risks of health disorders of workers engaged in mining and processing of polymetallic ores.) Ed. by V.N. Rakitskiy, A.B. Bakirov. M.: Ufa. 2016; 337 р. (In Russ.)

[13]

Каримова Л.К., Серебряков П.В., Шайхлисламова Э.Р., Яцына И.В. Профессиональные риски нарушения здоровья работников, занятых добычей и переработкой полиметаллических руд. Под ред. В.Н. Ракитского, А.Б. Бакирова. М.: Уфа. 2016; 337 с.

[14]

Kamilov F.Kh., Farshatova E.R., Menshikova I.A., Bikmetova E.R., Ganeev T.I. Osteoporoz: vliyanie khimicheskikh faktorov proizvodstvennoy sredy na metabolizm kostnoy tkani. (Osteoporosis: influence of chemical factors of the production environment on bone metabolism.) Ufa: GUP RB Ufa polygraph plant. World of print. 2015; 311 р. (In Russ.)

[15]

Камилов Ф.Х., Фаршатова Е.Р., Меньшикова И.А., Бикметова Э.Р., Ганеев Т.И. Остеопороз: влияние химических факторов производственной среды на метаболизм костной ткани. Уфа: ГУП РБ Уфимский полиграфкомбинат. Мир печати. 2015; 311 с.

[16]

Farshatova E.R., Menshikova I.A., Kamilov F.Kh. Effect of metals in copper-zinc sulphide ores on bone metabolism. Meditsinskiy vestnik Bashkortostana. 2014; 9 (4): 57–59. (In Russ.)

[17]

Фаршатова Е.Р., Меньшикова И.А., Камилов Ф.Х. Влияние металлов, содержащихся в медно-цинковых колчеданных рудах, на метаболизм костной ткани. Мед. вестн. Башкортостана. 2014; 9 (4): 57–59.

[18]

Farshatova E.R., Ganeev T.I., Menshikova I.A., Sarmeneeva L.V., Nurgaleev N.V., Kamilov F.Kh. Influence of elements of copper-zinc pyrite ores on bone tissue remodeling and factors of its regulation. Kazan Medical Journal. 2015; 96 (5): 783–787. (In Russ.) DOI: 10.17750/KMJ2015-783.

[19]

Фаршатова Е.Р., Ганеев Т.И., Меньшикова И.А., Сарменеева Л.В., Нургалеев Н.В., Камилов Ф.Х. Влияние элементов медно-цинковых колчеданных руд на ремоделирование костной ткани и факторы его регуляции. Казанский мед. ж. 2015; 96 (5): 783–787. DOI: 10.17750/KMJ2015-783.

[20]

Davletgareeva G.R., Farshatova E.R. Cha­racteristics of glutathione system in bone tissue in long-term entry of elements of copper-zinc pyritic ores. Eruditio Juvenium. 2017; 5 (2): 165–174. (In Russ.) DOI: 10.23888/HMJ20172165-174.

[21]

Давлетгареева Г.Р., Фаршатова Е.Р. Характеристика системы глутатиона в костной ткани при длительном поступлении элементов медно-цинковых колчеданных руд. Наука молодых (Eruditio Juvenium). 2017; 5 (2): 165–174. DOI: 10.23888/HMJ20172165-174.

[22]

Borisenok O.A., Bushma M.I., Basalai O.N., Radkovec A.Y. Glutathione biological role. Meditsinskie novosti. 2019; 7 (298): 3–8. (In Russ.)

[23]

Борисенок О.А., Бушма М.И., Басалай О.Н., Радковец А.Ю. Биологическая роль глутатиона. Мед. новости. 2019; 7 (298): 3–8.

[24]

Prigge J.R., Coppo L., Martin S.S., Ogata F., Mil­ler C.G., Bruschwein M.D., Orlicky D.J., Shearn C.T., Kundert J.A., Lytchier J., Herr A.E., Mattsson Å., Taylor M.P., Gustafsson T.N., Arnér E.S.J., Holmgren A., Schmidt E.E. Hepatocyte hyperproliferation upon ­liver-specific co-disruption of thioredoxin-1, thioredoxin reductase-1, and glutatione reductase. Cell. Reports. 2017; 19: 2771–2781. DOI: 10.1016/j.celrep.2017.06.019.

[25]

Rukovodstvo po provedeniyu doklinicheskikh issledovaniy lekarstvennykh sredstv. (Guidelines for conducting preclinical studies of medicinal products.) Ed. by A.N. Mironov. M.: Grif i K. 2012; 944 р. (In Russ.)

[26]

Руководство по проведению доклинических исследований лекарственных средств. Под ред. А.Н. Миронова. М.: Гриф и К. 2012; 944 с.

[27]

Karpishchenko A.I., Glushkov S.I. Influence of acute ­dichloroethane intoxication on glutathione system parameters. Klinicheskaya Laboratornaya Diagnostika. 1997; (6): 52–56. (In Russ.)

[28]

Карпищенко А.И., Глушков С.И. Влияние острой интоксикации дихлорэтаном на показатели системы глутатиона. Клин. лаб. диагностика. 1997; (6): 52–56.

[29]

Arutyunyan A.V., Dubinina E.E., Zybina N.N. Metody otsenki svobodnoradikal'nogo okisleniya i antioksidantnoy sistemy organizma. (Methods for evaluating free ra­dical oxidation and the body's antioxidant system.) SPb.: Foliant. 2000; 102 p. (In Russ.)

[30]

Арутюнян А.В., Дубинина Е.Е., Зыбина Н.Н. Методы оценки свободнорадикального окисления и антиоксидантной системы организма. СПб.: Фолиант. 2000; 102 с.

[31]

Meditsinskie laboratornye tekhnologii i diagnostika. Spravochnik v 2 t. (Medical laboratory technologies and diagnostics. Handbook in 2 volumes.) Ed. by A.I. Karpishchenko. Vol. 2. SPb.: Intermedica. 1999; 24–25. (In Russ.)

[32]

Медицинские лабораторные технологии и диагностика. Справочник в 2 т. Под ред. А.И. Карпищенко. Т. 2. СПб.: Интермедика. 1999; 24–25.

[33]

Orlowski M., Meister A. Isolation of gamma-glutamyl transpeptidase from hog kidney. J. Biol. Chem. 1965; 210: 338–347. PMID: 14253434.

[34]

Peterson G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicalle. Anal. Biochem. 1977; 83 (2): 346–356. DOI: 10.1016/0003-2697(77)90043-4.

[35]

Lörinez T., Jemnitz K., Kardon T., Mandl J., Szarka A. Ferroptosis is involved in acetaminophen induced cell death. Pathol. Oncol. Res. 2015; 21 (4): 1115–1121. DOI: 10.1007/s 12253-015-9946-3.

RIGHTS & PERMISSIONS

Kuramshina G.R., Kamilov F.K.

AI Summary AI Mindmap
PDF (296KB)

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/