The effect of free radical stress correction on corticoid signaling in the kidney of rat with different resistance to hypoxia after systemic circulation arrest

G A Bayburina , A F Samigullina , G A Drozdova

Kazan medical journal ›› 2021, Vol. 102 ›› Issue (1) : 19 -29.

PDF (791KB)
Kazan medical journal ›› 2021, Vol. 102 ›› Issue (1) : 19 -29. DOI: 10.17816/KMJ2021-19
Experimental medicine
research-article

The effect of free radical stress correction on corticoid signaling in the kidney of rat with different resistance to hypoxia after systemic circulation arrest

Author information +
History +
PDF (791KB)

Abstract

Aim. To assess the influence of the pathogenetic action of the succinate-containing drug on corticosteroid regulation in the kidney of rats with different resistance to hypoxia during recovery after systemic circulation arrest.

Methods. The object of the study was male non-inbred white rats weighing 200–220 g. A week after testing for resistance to hypoxia, a 5-minute systemic circulation arrest was simulated by intrathoracic clamping of the vascular bundle of the heart, followed by resuscitation. In the postresuscitation period, the experimental rats were once daily injected with a solution containing inosine + nicotinamide + riboflavin + succinic acid, and the control rats — 0.9% Sodium Chloride solution. The observation period was 35 days. We studied the content of corticosterone, aldosterone in blood plasma, gluco- and mineralocorticoid receptors, carbonylated proteins, dityrosine, and products that react with thiobarbituric acid in homogenates of the kidneys. Statistical data were presented as mean and standard deviation M±σ. Nonparametric Kruskal–Wallis (N) and Mann–Whitney (U) tests followed by Dunn test, Spearman correlation analysis were used. Differences were considered statistically significant at p ≤0.05.

Results. The use of succinate-containing preparation reduced the intensity of free radical processes in both groups of animals. Against this background, in low-resistance rats, on the 1st day, the concentration of glucocorticoid receptors statistically significantly increased to 117% (p <0.05), and then was comparable to the control; the greatest statistically significant changes in the level of mineralocorticoid receptors occurred on the 1st day (increase by 25%, p <0.001) and at 21–35th days (decrease by 22–30%, p <0.001). In highly resistant rats, the correction led to a shift in the maximum content of glucocorticoid receptors from the last day (134% of the control level, p <0.01 without therapy) to the 1st (123%, p <0.05 with succinate-containing therapy) and maintaining the receptors level comparable to the initial, in the future. The level of mineralocorticoid receptors in highly resistant rats was lower than in low resistant rats, both in the group without correction and with correction.

Conclusion. Correction of the course of the postresuscitation period with a succinate-containing drug in animals with a low resistance to hypoxia against the background of a decrease in the intensity of carbonyl stress and restoration of feedback mechanisms causes stabilization of glucocorticoid receptors level and a decrease in mineralocorticoid receptors to control values by the end of the experiment; in organisms highly resistant to hypoxia, against the background of correction, the activity of lipid peroxidation decreases and the level of both types of receptors are restored.

Keywords

glucocorticoid receptors / mineralocorticoid receptors / kidney / hypoxia / postresuscitation state / succinate / resistance to hypoxia

Cite this article

Download citation ▾
G A Bayburina, A F Samigullina, G A Drozdova. The effect of free radical stress correction on corticoid signaling in the kidney of rat with different resistance to hypoxia after systemic circulation arrest. Kazan medical journal, 2021, 102(1): 19-29 DOI:10.17816/KMJ2021-19

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brid'ko V.I., Shmakov A.S., Zhuravlev D.E. et al. The main patterns and outcomes of postresuscitation di­sease. Universitetskaya meditsina Urala. 2019; 5 (1): 25–27. (In Russ.)

[2]

Бридько В.И., Шмаков А.С., Журавлёв Д.Е. и др. Основные закономерности и исходы постреанимационной болезни. Университетская мед. Урала. 2019; 5 (1): 25–27.

[3]

Orlov Yu.P., Afanas’ev V.V. Hypoxia and hyperoxia in anesthesiologist-reanimatologist practice. The role of succinates in critical conditions. Novosti Khirurgii. 2018; 26 (2): 226–237. (In Russ.) DOI: 10.18484/2305-0047.2018.2.226.

[4]

Орлов Ю.П., Афанасьев В.В. Гипоксия и гипероксия в практике анестезиолога-реаниматолога. Роль сукцинатов при критических состояниях. Новости хирургии. 2018; 26 (2): 226–237. DOI: 10.18484/2305-0047.2018.2.226.

[5]

Lysenko V.I. Oxidative stress as a non-specific factor of organ damage pathogenesis (review of literature and own data). Meditsina neotlozhnyh sostoyaniy. 2020; 16 (1): 24–35. (In Russ.) DOI: 10.22141/2224-0586.16.1.2020.196926.

[6]

Лысенко В.И. Оксидативный стресс как неспе­цифический фактор патогенеза органных повреждений (обзор литературы и собственных исследований). Медицина неотложных состояний. 2020; 16 (1): 24–35. DOI: 10.22141/2224-0586.16.1.2020.196926.

[7]

Luk'yanova L.D. Signal'nye mekha­nizmy gipoksii. (Signaling mechanisms of hypoxia.) M.: RAN. 2019; 215 р. (In Russ.)

[8]

Лукьянова Л.Д. Сигнальные механизмы гипоксии. М.: РАН. 2019; 215 с.

[9]

Gangwar A., Paul S., Ahmad Y., Bhargava K. Competing trends of ROS and RNS-mediated protein modifications during hypoxia as an alternate mechanism of NO be­nefits. Biochimie. 2018; 148: 127–138. DOI: 10.1016/j.biochi.2018.03.009.

[10]

Bayburina G.A., Nurgaleeva E.A., Agletdinov E.F., Stepanova E.M. The ratio between free radical oxidation of lipids and proteins in the blood plasma after systemic anoxia in animals with different resistance to hypoxia. Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal. 2016; 54 (12-1): 6–9. (In Russ.) DOI: 10.18454/IRJ.2016.54.148.

[11]

Байбурина Г.А., Нургалеева Е.А., Аглетдинов Э.Ф., Степанова Е.М. Соотношение между показателями свободнорадикального окисления липидов и белков в плазме крови после системной аноксии у животных с разной устойчивостью к гипоксии. Международ. науч.-исслед. ж. 2016; 54 (12-1): 6–9. DOI: 10.18454/IRJ.2016.54.148.

[12]

Bayburina G.A. Features of the dynamics of corticosteroid receptors in the myocardium of animals with different resistance to hypoxia in the post resuscitation period. Kazan Medical Journal. 2020; 101 (1): 40–46. (In Russ.) DOI: 10.17816/KMJ2020-40.

[13]

Байбурина Г.А. Особенности динамики содержания кортикостероидных рецепторов в миокарде животных с разной устойчивостью к гипоксии в постреанимационном периоде. Казанский мед. ж. 2020; 101 (1): 40–46. DOI: 10.17816/KMJ2020-40.

[14]

Sun X., Kuang B., Dai Y. et al. Quantitative evaluation of dexamethasone treatment effects in renal ische­mia-reperfusion injury using contrast enhanced ultrasonography in rats. Clin. Hemorheol. Microcirc. 2020; 76 (1): 99–110. DOI: 10.3233/CH-200842.

[15]

Sapolsky R.M., Romero L.M., Munck A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Rev. 2000; 21 (1): 55–89. DOI: 10.1210/edrv.21.1.0389.

[16]

Sztechman D., Czarzasta K., Cudnoch-Jedrzejewska A. et al. Aldosterone and mineralocorticoid receptors in regulation of the cardiovascular system and pathological remodelling of the heart and arteries. J. Physiol. Pharmacol. 2018; 69 (6): 829–845. DOI: 10.26402/jpp.2018.6.01.

[17]

Blankenburg M., Fett A.-K., Eisenring S. et al. Patient characteristics and initiation of mineralocorticoid receptor antagonists in patients with chronic kidney disease in routine clinical practice in the US: a retrospective cohort study. BMC Nephrol. 2019; 20 (1): 171. DOI: 10.1186/s12882-019-1348-4.

[18]

Ruhs S., Strätz N., Schlör K. et al. Modulation of transcriptional mineralocorticoid receptor activity by nitrosative stress. Free Radic. Biol. Med. 2012; 53 (5): 1088–1100. DOI: 10.1016/j.freeradbiomed.2012.06.028.

[19]

Zavaliy L.B., Petrikov S.S., Schegolev A.V. Metabolic therapy in patients with ischemic stroke. Russian Sklifosovsky Journal “Emergency Medical Care”. 2018; 7 (1): 44–52. (In Russ.) DOI: 10.23934/2223-9022-2018-7-1-44-52.

[20]

Завалий Л.Б., Петриков С.С., Щёголев А.В. Метаболическая терапия при ишемическом инсульте. Ж. им. Н.В. Склифосовского «Неотложная мед. помощь». 2018; 7 (1): 44–52. DOI: 10.23934/2223-9022-2018-7-1-44-52.

[21]

Lazarev V.V., Gadomsky I.V. Succinate containing preparations in the structure of the­rapeutic agents in patients in critical conditions. Rossiyskiy vestnik detskoy khirurgii, anesteziologii i reanimatologii. 2016; 6 (3): 111–116. (In Russ.) DOI: 10.30946/psaic279.

[22]

Лазарев В.В., Гадомский И.В. Сукцинатсодержащие препараты в структуре терапевтических средств у больных в неотложных состояниях (обзор литературы). Рос. вестн. детской хир., анестезиол. и реаниматол. 2016; 6 (3): 111–116. DOI: 10.30946/psaic279.

[23]

Cherny V.I., Andronova I.A., Gorodnik G.A. et al. The role of succinic acid oxidation in the intensive therapy of severe traumatic brain injury. Meditsina neotlozhnyh sosto­yaniy. 2019; (4): 107–117. (In Russ.) DOI: 10.22141/2224-0586.4.99.2019.173942.

[24]

Черний В.И., Андронова И.А., Городник Г.А. и др. Роль сукцинатоксидазного окисления в интенсивной терапии тяжёлой черепно-мозговой травмы. Медицина неот­ложных состояний. 2019; (4): 107–117. DOI: 10.22141/2224-0586.4.99.2019.173942.

[25]

Bayburina G.A., Nurgale­eva E.A., Shibkova D.Z., Bashkatov S.A. Method for determining the degree of resistance to hypobaric hypo­xia of small laboratory animals. Patent for invention RUS No. 2563059 from 20.09.2015. Byull. No. 26. (In Russ.)

[26]

Байбурина Г.А., Нургалеева Е.А., Шибкова Д.З., Башкатов С.А. Способ определения степени устойчивости к гипобарической гипоксии мелких лабораторных животных. Патент РФ на изобретение №2563059 от 20.09.2015. Бюлл. №26.

[27]

Korpachev V.G., Lysenkov S.P., Tel' L.Z. Modeling clinical death and postresuscitation disease in rats. Patologicheskaya fiziologiya i eksperimental'naya tera­piya. 1982; (3): 78–80. (In Russ.)

[28]

Корпачёв В.Г., Лысенков С.П., Тель Л.З. Моделирование клинической смерти и постреанимационной болезни у крыс. Патол. физиол. и эксперим. терап. 1982; (3): 78–80.

[29]

Dubinina E.E. Produkty metabolizma kisloroda v funkcional'noj aktivnosti kletok (zhizn' i smert', sozidanie i razrushenie). Fiziologicheskie i kliniko-biohimicheskie aspekty. (Oxygen metabolism products in the functional activity of cells (life and death, creation and destruction). Physiological and clinical-biochemical aspects.) SPb.: Medicinskaya pressa. 2006; 397 р. (In Russ.)

[30]

Дубинина Е.Е. Продукты метаболизма кислорода в функциональной активности клеток (жизнь и смерть, созидание и разрушение). Физиологические и клинико-биохимические аспекты. СПб.: Медицинская пресса. 2006; 397 с.

[31]

Rukovods­tvo po provedeniyu doklinicheskih issledovanij lekarstvennyh ­sredstv. (Guidelines for conducting preclinical stu­dies of medicines.) Ed. by Mironov A.N., M.: Grif i K. 2012. https://www.booksmed.com/farmakologiya/3225-rukovodstvo-po-provedeniyu-doklinicheskih-issledovaniy-lekarstvennyh-­sredstv-mironov-an.html (access date: 29.09.2020). (In Russ.)

[32]

Руководство по проведению доклинических исследований лекарственных средств. Под ред. А.Н. Миронова. М.: Гриф и К. 2012. https://www.booksmed.com/farmakologiya/3225-rukovodstvo-po-provedeniyu-doklinicheskih-issledovaniy-lekarstvennyh-sredstv-mironov-an.html (дата обращения: 29.09.2020).

[33]

Bayburina G.A., Nurgaleeva E.A., Agletdinov E.F., Samigullina A.F. Effect of hypoxia tolerance on the relation between indicators of free radical oxidation of lipides and proteins in murine kidneys during the postresuscitation period. Kazan Medical Journal. 2017; 98 (6): 949–954. (In Russ.) DOI: 10.17750/KMJ2017-954.

[34]

Байбурина Г.А., Нургалеева Е.А., Самигуллина А.Ф., Аглетдинов Э.Ф. Влияние устойчивости к гипоксии на соотношение между показателями свободнорадикального окисления липидов и белков в почках крыс в постреанимационном периоде. Казанский мед. ж. 2017; 98 (6): 949–954. DOI: 10.17750/KMJ2017-954.

[35]

Ingawale D.K., Mandlik S.K. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol. Immunotoxicol. 2020; 42 (2): 59–73. DOI: 10.1080/08923973.2020.1728765.

[36]

Novikov V.E., Levchenkova O.S., Ivancova E.N. Possibilities of antihypoxant use for mitochondrial dysfunctions Vestnik Smolenskoy gosudarstvennoy meditsinskoy akademii. 2020; 19 (1): 41–45. (In Russ.)

[37]

Новиков В.Е., Левченкова О.С., Иванцова Е.Н. Перспективы применения антигипоксантов в лечении митохондриальных дисфункций. Вестн. Смоленской гос. мед. академии. 2020; 19 (1): 41–45.

[38]

Ding W., Guo H., Xu C. et al. Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury. Oncotarget. 2016; 7 (14): 17 479–17 491. DOI: 10.18632/oncotarget.8243.

[39]

Barrera-Chimal J., Girerd S., Jaisser F. Mineralocorticoid receptor antagonists and kidney diseases: pathophysiological basis. Kidney Int. 2019; 96 (2): 302–319. DOI: 10.1016/j.kint.2019.02.030.

[40]

Ghosh S., Choudhury S., Mukherjee S. et al. Fluo­xetine triggers selective apoptosis in inflammation-induced proliferating (Ki-67high) thymocytes. Immunol. Cell Biol. 2019; 97 (5): 470–484. DOI: 10.1111/imcb.12227.

[41]

Zhang А. The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury. Labor. Investig. 2015; 95 (12): 1374–1386. DOI: 10.1038/labinvest.2015.118.

[42]

Hosseiniyan Khatibi S.M., Ardalan M., Abediazar S., Zununi Vahed S. The impact of steroids on the injured podocytes in nephrotic syndrome. J. Steroid Biochem. Mol. Biol. 2020; 196: 105490. DOI: 10.1016/j.jsbmb.2019.105490.

[43]

Kirova Yu.I., Germanova E.L. New aspects of the energy-tropic action of mexidol. Patologicheskaya fiziologiya i eksperimental'naya terapiya. 2018; 62 (4): 36–40. (In Russ.) DOI: 10.25557/0031-2991.2018.04.36-40.

[44]

Кирова Ю.И., Германова Э.Л. Новые аспекты энерготропного действия мексидола. Патол. физиол. и эксперим. терап. 2018; 62 (4): 36–40. DOI: 10.25557/0031-2991.2018.04.36-40.

[45]

Moonen L., Geryl H., D'Haese P.C., Vervaet B.A. Short-term dexamethasone treatment transiently, but not permanently, attenuates fibrosis after acute-to-chronic kidney injury. BMC Nephrol. 2018; 19 (1): 343. DOI: 10.1186/s12882-018-1151-7.

[46]

Lattenist L., Lechner S.M., Messaoudi S. et al. Nonsteroidal mineralocorticoid receptor antagonist finerenone protects against acute kidney injury-mediated chro­nic kidney disease: role of oxidative stress. Hypertension. 2017; 69 (5): 870–878. DOI: 10.1161/HYPERTENSIONAHA.116.08526.

RIGHTS & PERMISSIONS

Bayburina G.A., Samigullina A.F., Drozdova G.A.

AI Summary AI Mindmap
PDF (791KB)

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/