Quantitative and qualitative changes in blood cells associated with COVID-19

N G Evtugina , S S Sannikova , A D Peshkova , S I Safiullina , I A Andrianova , G R Tarasova , R R Khismatullin , Sh M Abdullaeva , R I Litvinov

Kazan medical journal ›› 2021, Vol. 102 ›› Issue (2) : 141 -155.

PDF (778KB)
Kazan medical journal ›› 2021, Vol. 102 ›› Issue (2) : 141 -155. DOI: 10.17816/KMJ2021-141
Theoretical and clinical medicine
research-article

Quantitative and qualitative changes in blood cells associated with COVID-19

Author information +
History +
PDF (778KB)

Abstract

Aim. To establish the relationship of hematological disorders with the pathogenesis, course and outcomes of COVID-19.

Methods. We examined 235 hospitalized patients with moderate and severe forms of acute COVID-19 receiving anticoagulants and immunosuppressive drugs. We studied the full blood cell counts and morphology along with the platelet function by flow cytometry in comparison with the clinical features and synthesis of inflammatory markers. To assess platelet contractility, blood clot contraction (retraction) kinetics was used in combination with scanning electron microscopy of platelets and blood clots.

Results. Hemolytic anemia, neutrophilia and lymphopenia were associated with immature erythrocytes and leukocytes, indicating activation of hematopoiesis. Contraction of blood clots in COVID-19 was impaired, especially in severe and lethal cases, as well as in the presence of comorbidities, including myeloproliferative and coronary heart diseases and acute cerebrovascular disease. In male patients, the changes in clot contraction were more pronounced. Suppression of clot contraction correlated directly with anemia and coagulopathy, including a high D-dimer level, which confirms the pathogenetic significance of blood clot contraction in COVID-19. A decrease in platelet contractility was due to moderate thrombocytopenia in combination with chronic platelet activation and secondary platelet dysfunction. The structure and cellular composition of blood clots depended on the extent of contraction; clots with impaired contraction were porous, had a low content of deformed polyhedral erythrocytes (polyhedrocytes) and an even distribution of fibrin.

Conclusion. Blood cells undergoing both quantitative and qualitative changes are involved in the pathogenesis of COVID-19; the suppressed platelet-driven contraction of intravital blood clots may be a part of the prothrombotic mechanisms.

Keywords

blood cells / blood clotting / contraction of blood clots / COVID-19 / platelets

Cite this article

Download citation ▾
N G Evtugina, S S Sannikova, A D Peshkova, S I Safiullina, I A Andrianova, G R Tarasova, R R Khismatullin, Sh M Abdullaeva, R I Litvinov. Quantitative and qualitative changes in blood cells associated with COVID-19. Kazan medical journal, 2021, 102(2): 141-155 DOI:10.17816/KMJ2021-141

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhatraju P.K., Ghassemieh B.J., Nichols M., Kim R., Jerome K.R., Nalla A.K., Greninger A.L., Pipavath S., Wurfel M.M., Evans L., Kritek P.A., West T.E., Luks A., Gerbino A., Dale C.R., Goldman J.D., O'Mahony S., Mikacenic C. Covid-19 in critically ill patients in the Seattle region — Case Series. N. Engl. J. Med. 2020; 382: 2012–2022. DOI: 10.1056/NEJMoa2004500.

[2]

Temporary guidelines “Prevention, diagnosis and treatment of the new coronavirus infection (COVID-19)”. Ministry of Health of the Russian Fe­deration. Version 10 (08.02.2021). 261 р. https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D0%9C%D0%A0_COVID-19_%28v.10%29-08.02.2021_%281%29.pdf (access date: 09.02.2021). (In Russ.)

[3]

Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Министерство здравоохранения РФ. Версия 10 (08.02.2021). 261 с. https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/%D0%92%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D0%9C%D0%A0_COVID-19_%28v.10%29-08.02.2021_%281%29.pdf (дата обращения: 09.02.2021).

[4]

COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). ArcGIS. Johns Hopkins University. https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 (access date: 01.02.2021).

[5]

Levin A.T., Hanage W.P., Owusu-Boaitey N., Cochran K.B., Walsh S.P., Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur. J. Epidemiol. 2020; 35 (12): 1123–1138. DOI: 10.1007/s10654-020-00698-1.

[6]

Dudel C., Riffe T., Acosta E., Dudel C., Riffe T., Acosta E., van Raalte A., Strozza C., Myrskylä M. Monito­ring trends and differences in COVID-19 case-fatality rates using decomposition methods: Contributions of age structure and age-specific fatality. PLoS One. 2020; 15 (9): e0238904. DOI: 10.1371/journal.pone.0238904.

[7]

Linssen J., Ermens A., Berrevoets M., Seghezzi M., Previtali G., van der Sar-van der Brugge S., Russcher H., Verbon A., Gillis J., Riedl J., de Jongh E., Saker J., Münster M., Munnix I.C., Dofferhof A., Scharnhorst V., Ammerlaan H., Deiteren K., Bakker S.J., Van Pelt L.J., Klui­ters-de Hingh Y., Leers M.P., van der Ven A.J. A novel haemocytometric COVID-19 prognostic score developed and validated in an observational multicentre European hospital-based study. eLife. 2020; 9: e63195. DOI: 10.7554/eLife.63195.

[8]

Qu R., Ling Y., Zhang Y.H., Wei L.Y., Chen X., Li X.M., Liu X.Y., Liu H.M., Guo Z., Ren H., Wang Q. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J. Med. Virol. 2020; 92 (9): 1533–1541. DOI: 10.1002/jmv.25767.

[9]

Gasparyan A.Y., Ayvazyan L., Mukanova U., Yessirkepov M., Kitas G.D. The platelet-to-lymphocyte ratio as an inflammatory marker in rheumatic diseases. Ann. Lab. Med. 2019; 39 (4): 345–357. DOI: 10.3343/alm.2019.39.4.345.

[10]

Terpos E., Ntanasis-Stathopoulos I., Elalamy I., Kastritis E., Sergentanis T.N., Politou M., Psaltopoulou T., Gerotziafas G., Dimopoulos M.A. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020; 95 (7): 834–847. DOI: 10.1002/ajh.25829.

[11]

Murphy P., Glavey S., Quinn J. Anemia and red blood cell abnormalities in COVID-19. Leukemia & Lymphoma. 2021; 22: 1–2. DOI: 10.1080/10428194.2020.1869967.

[12]

Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased morta­lity in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020; 18 (5): 1094–1099. DOI: 10.1111/jth.14817.

[13]

Thachil J., Tang N., Gando S., Falanga A., Cattaneo M., Levi M., Clark C., Iba T. ISTH interim gui­dance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020; 18 (5): 1023–1026. DOI: 10.1111/jth.14810.

[14]

Levi M., Thachil J., Iba T., Levy J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7 (6): e438–e440. DOI: 10.1016/S2352-3026(20)30145-9.

[15]

Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020; 18 (4): 844–847. DOI: 10.1111/jth.14768.

[16]

Safiullina S.I., Litvinov R.I. Recommendations for the prevention and correction of thrombotic complications in COVID-19. Kazan Medical Journal. 2020; 101 (4): 485–488. (In Russ.) DOI: 10.17816/KMJ2020-485.

[17]

Сафиуллина С.И., Литвинов Р.И. Рекомендации по профилактике и коррекции тромботических осложнений при COVID-19. Казанский мед. ж. 2020; 101 (4): 485–488. DOI: 10.17816/KMJ2020-485.

[18]

Alban S., Welzel D., Hemker H.C. Pharmacokinetic and pharmacodynamic characterization of a medium-molecular-weight heparin in comparison with UFH and LMWH. Semin. Thromb. Hemos. 2002; 28 (4): 369–378. DOI: 10.1055/s-2002-34306.

[19]

Tutwiler V., Litvinov R.I., Lozhkin A.P., Peshkova A.D., Lebedeva T., Ataullakhanov F.I., Spiller K.L., Cines D.B., Weisel J.W. Kinetics and mechanics of clot contraction are governed by molecular and cellular blood composition. Blood. 2016; 127 (1): 149–159. DOI: 10.1111/jth.14370.

[20]

Weisel J.W., Litvinov R.I. Red blood cells: the forgotten player in hemostasis and thrombosis. J. Thromb. Haemost. 2019; 17 (2): 271–282. DOI: 10.1111/jth.14360.

[21]

Peshkova A.D., Malyasyov D.V., Bredikhin R.A., Le Minh G., Andrianova I.A., Tutwiler V., Nagaswami C., Weisel J.W., Litvinov R.I. Reduced contraction of blood clots in patients with venous thromboembolism is a possible thrombogenic and embologenic mechanism. TH Open. 2018; 2 (1): e104–e115. DOI: 10.1055/s-0038-1635572.

[22]

Tutwiler V., Peshkova A.D., Andrianova I.A., Khasanova D.R., Weisel J.W., Litvinov R.I. Blood clot contraction is impaired in acute ischemic stroke. Arterioscler. Thromb. Vasc. Biol. 2017; 37 (2): 271–279. DOI: 10.1161/ATVBAHA.116.308622.

[23]

Le Minh G., Peshkova A.D., Andrianova I.A., Khasanova D.R., Weisel J.W., Litvinov R.I. Impaired contraction of blood clots is a novel prothrombotic mechanism in systemic lupus erythematosus. Clin. Sci. (Lond.). 2018; 232 (2): 243–254. DOI: 10.1042/CS20171510.

[24]

Peshkova A.D., Safiullina S.I., Evtugina N.G., Baras Y.S., Ataullakhanov F.I., Weisel J.W., Litvinov R.I. Premorbid hemostasis in women with a history of pregnancy loss. Thromb. Haemost. 2019; 119 (12): 1994–2004. DOI: 10.1055/s-0039-1696972.

[25]

Takahashi T., Ellingson M.K., Wong P., Israelow B., Lucas C., Klein J., Silva J., Mao T., Oh J.E., Tokuyama M., Lu P., Venkataraman A., Park A., Liu F., Meir A., Sun J., Wang E.Y., Casanovas-Massana A., Wyllie A.L., Vogels C.B.F., Earnest R., Lapidus S., Ott I.M., Moore A.J., Shaw A., Fournier J.B., Odio C.D., Farhadian S., Dela Cruz C., Grubaugh N.D., Schulz W.L., Ring A.M., Ko A.I., Omer S.B., Iwasaki A. Sex differences in immune respon­ses that underlie COVID-19 disease outcomes. Nature. 2020; 588 (7837): 315–320. DOI: 10.1038/s41586-020-2700-3.

[26]

Gebhard C., Regitz-Zagrosek V., Neuhauser H.K., Klein S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 2020; 11: 29. DOI: 10.1186/s13293-020-00304-9.

[27]

Tutwiler V., Mukhitov A.R., Peshkova A.D., Le Minh G., Khismatullin R.R., Vicksman J., Nagaswami C., Litvinov R.I., Weisel J.W. Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Sci. Rep. 2018; 8 (1): 17907. DOI: 10.1038/s41598-018-35849-8.

[28]

Cines D.B., Lebedeva T., Nagaswami C., Hayes V., Massefski W., Litvinov R.I., Rauova L., Lowery T.J., Weisel J.W. Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin. Blood. 2014; 123 (10): 1596–1603. DOI: 10.1182/blood-2013-08-523860.

[29]

Tutwiler V., Peshkova A.D., Le Minh G., Zaitsev S., Litvinov R.I., Cines D.B., Weisel J.W. Blood clot contraction differentially modulates internal and external fibrinolysis. J. Thromb. Haemost. 2019; 17 (2): 361–370. DOI: 10.1111/jth.14370.

[30]

Danzi G.B., Loffi M., Galeazzi G., Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur. Heart J. 2020; 41 (19): 1858. DOI: 10.1093/eurheartj/ehaa254.

[31]

Bonow R.O., Fonarow G.C., O’Gara P.T., Yancy C.W. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol. 2020; 5 (7): 751–753. DOI: 10.1001/jamacardio.2020.1105.

[32]

Caine G.J., Blann A.D. Soluble p-selectin should be measured in citrated plasma, not in serum. Br. J. Haematol. 2003; 121: 527–532. DOI: 10.1046/j.1365-2141.2003.04320.x.

RIGHTS & PERMISSIONS

Evtugina N.G., Sannikova S.S., Peshkova A.D., Safiullina S.I., Andrianova I.A., Tarasova G.R., Khismatullin R.R., Abdullaeva S.M., Litvinov R.I.

AI Summary AI Mindmap
PDF (778KB)

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/