Bactericidal capacity of oral neutrophils as a marker for clinical course of inflammatory ­respiratory diseases in children

O I Pikuza , R A Fayzullina , A M Zakirova , Z Ya Suleymanova , E L Rashitova , E V Volyanyuk

Kazan medical journal ›› 2020, Vol. 101 ›› Issue (5) : 740 -748.

PDF (388KB)
Kazan medical journal ›› 2020, Vol. 101 ›› Issue (5) : 740 -748. DOI: 10.17816/KMJ2020-740
Clinical experiences
research-article

Bactericidal capacity of oral neutrophils as a marker for clinical course of inflammatory ­respiratory diseases in children

Author information +
History +
PDF (388KB)

Abstract

Aim. To study the number of neutrophils in the oral cavity, their bactericidal potential, to assess as an indicator for predicting the course of recurrent bronchitis (J40) and community-acquired focal pneumonia in children.

Methods. 87 children between 5 and 10 years old, including 52 children with recurrent bronchitis and 35 with focal community-acquired pneumonia were observed. The control group consisted of 37 conditionally healthy children of a similar age. Viral antigens were studied by chemiluminescence immunoassay. Oral neutrophil counts and functional activity were determined. Antibacterial antibodies were measured by an enzyme-linked immunosorbent assay (ELISA).

Results. 70.11% of patients had a viral antigen, and 57.47% had immunoglobulins M and G against bacterial pathogens. Oral neutrophil counts increased in the main group compared to the control group: up to 163.8±26.5 cells (p <0.001) in recurrent bronchitis, to 110.9±25.5 (p <0.05) in community-acquired pneumonia. By the recovery period, the number of oral neutrophils counts decreased in recurrent bronchitis (1.7 times higher compared to the control group, p <0.01) and remained practically unchanged in community-acquired pneumonia (115.0±26.9, p <0.05). Myeloperoxidase level had opposite changes for the groups compared to the control group: with recurrent bronchitis, it was 1.61±0.09 to the level in the control group (p <0.05), with community-acquired pneumonia — 0.73±0.09 to the level in the control group (p <0.001). The level of lysosomal cationic proteins decreased to 0.77±0.09 to the level in the control group (p <0.05) in recurrent bronchitis, and to 0.80±0.09 (p <0.05) in pneumonia.

Conclusion. In inflammation of the respiratory tract, neutrophil migration to the oral cavity, as well as myelope­roxidase level, increases, indicators of spontaneous luminol-dependent chemiluminescence are activated, and a deficiency of lysosomal cationic proteins occurs; this prevents the penetration of the pathogen into the lower respiratory tract.

Keywords

oral neutrophils / children / recurrent bronchitis / community-acquired pneumonia / chemiluminescence

Cite this article

Download citation ▾
O I Pikuza, R A Fayzullina, A M Zakirova, Z Ya Suleymanova, E L Rashitova, E V Volyanyuk. Bactericidal capacity of oral neutrophils as a marker for clinical course of inflammatory ­respiratory diseases in children. Kazan medical journal, 2020, 101(5): 740-748 DOI:10.17816/KMJ2020-740

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Immunizaciya, vakciny i biologicheskie preparaty. Pnevmokokkovaya infekciya. (Immunization, vaccines and biologicals. Pneumococcal disease.) https://www.who.int/immunization/ru/ (access date: 21.08.2018). (In Russ.)

[2]

Иммунизация, вакцины и биологические препараты. Пневмококковая инфекция. https://www.who.int/immunization/ru/ (дата обращения: 21.08.2018).

[3]

Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S. et al.; Russian Respiratory Society, Interregional association on clinical microbiology and antimicrobial chemotherapy. Clinical guidelines on diagnosis, treatment and prevention of severe community acquired pneumonia in adults. Pulmonologiya. 2014; (4): 13–48. (In Russ.) DOI: 10.18093/0869-0189-2014-0-4-13-48.

[4]

Чучалин А.Г., Синопальников А.И., Козлов Р.С. и др.; Российское респираторное общество (РРО), Меж­региональная ассоциация по клинической микробиологии и антимикробной химиотерапии (МАКМАХ). Клинические рекомендации по диагностике, лечению и профилактике тяжёлой внебольничной пневмонии у взрослых. Пульмонология. 2014; (4): 13–48. DOI: 10.18093/0869-0189-2014-0-4-13-48.

[5]

Ilenkova N.A., Protasova I.N., Sokolovskaya E.S. Community-acquired pneumonia in children caused by pneumococci of MLSB- and M-phenotype: Clinical cases. Current pediatrics. 2017; 16 (2): 175–179. (In Russ.) DOI: 10.15690/vsp.v16i2.1720.

[6]

Ильенкова Н.А., Протасова И.Н., Соколовская Е.С. Внебольничная пневмония у детей, вызванная пневмококками MLSB- и M-фенотипа: клинические случаи. Вопр. соврем. педиатрии. 2017; 16 (2): 175–179. DOI: 10.15690/vsp.v16i2.1720.

[7]

Zakirova A.M., Pikuza O.I., Shayapova D.T. et al. Effectiveness of nebulizers in the treatment of respiratory tract respiratory infections in children of different ages. Meditsinskiy sovet. 2020; (1): 152–157. (In Russ.) DOI: 10.21518/2079-701Х-2020-1-152-157.

[8]

Закирова А.М., Пикуза О.И., Шаяпова Д.Т. и др. Эффективность небулайзеров в терапии респираторного поражения дыхательных путей у детей разных возрастных групп. Мед. совет. 2020; (1): 152–157. DOI: 10.21518/2079-701Х-2020-1-152-157.

[9]

Vavilova V.P., Vavilov A.M., Chercaeva A.H. Prevention of pneumococcal infection in children with chronic diseases of the nasopharynx reduces the incidence of ­other respiratory tract infections: results of a comparative prospective study. Current pediatrics. 2015; 14 (5): 557–563. (In Russ). DOI: 10.15690/vsp. v14i5.1439.

[10]

Вавилова В.П., Вавилов А.М., Черкаева А.Х. Профилактика пневмококковой инфекции у детей с хроническими заболеваниями носоглотки снижает уровень заболеваемости другими инфекциями респираторного тракта: результаты проспективного сравнительного исследования. Вопр. соврем. педиатрии. 2015; 14 (5): 557–563. DOI: 10.15690/vsp. v14i5.1439.

[11]

Bara­nov A.A., Namazova-Baranova L.S., Vishneva E.A. et al. Primary ciliary dyskinesia in children. Pediatric pharmacology. 2018; 15 (1): 20–31. (In Russ.) DOI: 10.15690/pf.v15i1.1840.

[12]

Баранов А.А., Намазова-Баранова Л.С., Вишнёва Е.А. и др. Первичная цилиарная дискинезия у детей. Педиатрич. фармакол. 2018; 15 (1): 20–31. DOI: 10.15690/pf.v15i1.1840.

[13]

Korovkina E.S., Kostinov M.P. Immune mechanisms of community-acquired pneumonia and copd due to infectious etiology and methods of immunotherapy. Journal of microbiology, epidemiology and immunobiology. 2019; (2): 100–109. (In Russ.) DOI: 10.36233/0372-9311-2019-2-100-109.

[14]

Коровкина Е.С., Костинов М.П. Иммунопатологические механизмы внебольничной пневмонии и хронической обструктивной болезни лёгких, обусловленные инфекционной этиологией этих заболеваний, и пути возможной иммунокоррекции. Ж. микробиол., эпидемиол. и иммунобиол. 2019; (2): 100–109. DOI: 10.36233/0372-9311-2019-2-100-109.

[15]

Namazova-Baranova L.S., Fedoseenko M.V., Vishneva E.A. et al. Theoretical background and real results: A data review on vaccine prevention of pneumococcal infection in the world. Pediatric pharmacology. 2018; 15 (1): 58–74. (In Russ.) DOI: 10.15690/pf.v15i1.1844.

[16]

Намазова-Баранова Л.С., Федосеенко М.В., Вишнёва Е.А. и др. Теоретические основы и реальные результаты: обзор материалов по вакцинопрофилактике пневмококковой инфекции в мире. Педиатрич. фармакол. 2018; 15 (1): 58–74. DOI: 10.15690/pf.v15i1.1844.

[17]

Suleymanova Z.Ya., Zakirova A.M. Clinical and diagnostic value of indicators of interferon status and antiendotoxin protection in patients with recurrent bronchitis. Diagnostic issues in pediatrics. 2009; 1 (5): 17–19. (In Russ.)

[18]

Сулейманова З.Я., Закирова А.М. Клинико-диагностическое значение показателей интерферонового статуса и антиэндотоксиновой защиты у больных с рецидивирующим бронхитом. Вопр. диагностики в педиатрии. 2009; 1 (5): 17–19.

[19]

Andryukov B.G., Bogdanova V.D., Lyapun I.N. Phenotypic heterogeneity of neutrophils: new antimicrobic characteristics and diagnostic technologies. Russian journal of hematology and transfusiology. 2019; 64 (2): 211–221. (In Russ.) DOI: 10.35754/0234-5730-2019-64-2-211-221.

[20]

Андрюков Б.Г., Богданова В.Д., Ляпун И.Н. Фенотипическая гетерогенность нейтрофилов: новые антимикробные характеристики и диагностические технологии. Гематол. и трансфузиол. 2019; 64 (2): 211–221. DOI: 10.35754/0234-5730-2019-64-2-211-221.

[21]

Wang J., Hossain M., Thanabalasuriar A. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science. 2017; 358 (359): 111–116. DOI: 10.1126/science.aam9690.

[22]

Zakirova A.M., Pikuza O.I., Suleymanova Z.Ya., Kali­mullina A.V. The content of oral neutrophils in community-acquired pneumonia and bronchitis in school children. Prakticheskaya Meditsina. 2012; (7-2): 45. (In Russ.)

[23]

Закирова А.М., Пикуза О.И., Сулейманова З.Я., Калимуллина А.В. Содержание оральных нейтрофилов при внебольничных пневмониях и бронхитах у детей школьного возраста Практич. мед. 2012; (7-2): 45.

[24]

Jones H.R., Robb C.T., Perretti M. et al. The role of neutrophils in inflammation resolution. Semin. Immunol. Acad. Press. 2016; 289 (2): 137–145. DOI: 10.1016/j.smim.2016.03.007.

[25]

Kaur M., Singh D. Neutrophil chemotaxis caused by chronic obstructive pulmonary disease alveolar macrophages: the role of CXCL8 and the receptors CXCR1/CXCR2. J. Pharmacol. Exp. Therap. 2013; 347 (1): 173–180. DOI: 0.1124/jpet.112.201855.

[26]

Dolgushin I.I., Mezentseva E.A., Savochkina A.Yu. et al. Neutrophil as a multifunctional relay in immune system. Infektsiya i immunitet. 2019; 9 (1): 9–38. (In Russ.) DOI: 10.15789/2220-7619-2019-1-9-38.

[27]

Долгушин И.И., Мезенцева Е.А., Савочкина А.Ю. и др. Нейтрофил как «многофункциональное устройство» иммунной системы. Инфекция и иммунитет. 2019; 9 (1): 9–38. DOI: 10.15789/2220-7619-2019-1-9-38.

[28]

Andryukov B.G., Somova L.M., Drobot E.I., Matosova E.V. Defensive strategy of neutrophilic granulocytes against pathogenic bacteria. Zdorov'e, meditsinskaya ekologiya. Nauka. 2017; (1): 4–18. (In Russ.) DOI: 10.5281/zenodo.345606.

[29]

Андрюков Б.Г., Сомова Л.М., Дробот Е.И., Матосова Е.В. Защитные стратегии нейтрофильных гранулоцитов от патогенных бактерий. Здоровье, мед. экология. Наука. 2017; (1): 4–18. DOI: 10.5281/zenodo.345606.

[30]

Nadzhimitdinov S.T. Osnovnye laboratornye metody issledovaniya morfologii kletok krovi. (Basic laboratory methods for studying the morphology of blood cells.) Tashkent. 1970; 54 р. (In Russ.)

[31]

Наджимитдинов С.Т. Основные лабораторные методы исследования морфологии клеток крови. Ташкент. 1970; 54 с.

[32]

Slavinskiy A.A., Nikitina G.V. Tsitokhimicheskoe vyyavlenie kationnykh belkov v granulotsitakh krovi amido chernym 10B dlya vizual'noy otsenki i komp'yuternogo analiza izobrazheniya. Klinicheskaya laboratornaya diagnostika. 1999; (2): 35–37 (In Russ.)

[33]

Славинский А.А., Никитина Г.В. Цитохимическое выявление катионных белков в гранулоцитах крови амидо чёрным 10Б для визуальной оценки и компьютерного анализа изображения. Клин. лаб. диагностика. 1999; (2): 35–37.

[34]

Novikova I.A. Vvedenie v klinicheskuyu laboratornuyu diagnostiku. (Introduction to Clinical Laboratory Diagnostics.) Minsk: Vysheyshaya shkola. 2018; 157–158. (In Russ.)

[35]

Новикова И.А. Введение в клиническую лабораторную диагностику. Минск: Вышэйшая школа. 2018; 157–158.

RIGHTS & PERMISSIONS

Pikuza O.I., Fayzullina R.A., Zakirova A.M., Suleymanova Z.Y., Rashitova E.L., Volyanyuk E.V.

AI Summary AI Mindmap
PDF (388KB)

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/