Slc6a4, Tph2, Htr1b, Htr2a genes expression in the mouse spinal cord after microgravity exposure simulation on earth

M S Kuznetsov , A N Lisyukov , M A Davleeva , A A Izmailov

Kazan medical journal ›› 2020, Vol. 101 ›› Issue (5) : 698 -703.

PDF (391KB)
Kazan medical journal ›› 2020, Vol. 101 ›› Issue (5) : 698 -703. DOI: 10.17816/KMJ2020-698
Experimental medicine
research-article

Slc6a4, Tph2, Htr1b, Htr2a genes expression in the mouse spinal cord after microgravity exposure simulation on earth

Author information +
History +
PDF (391KB)

Abstract

Aim. To determine the level of gene expression of the serotonergic neurotransmission system (Slc6a4, Tph2, Htr1b, Htr2a) in the cervical and lumbar enlargement of the spinal cord for mice after 30-day microgravity exposure simulation by using the antiorthostatic unloading model by Morey-Holton et al. and a subsequent 7-dayrecovery period.

Methods. The experimental animals were divided into three groups: “Unloading” group with mice undergoes hindlimb-unloading procedure for 30 days (n=5); “Recovery” group with mice undergoes hindlimb-unloading procedure for 30 days, followed by readaptation within 7 days (n=5); “Control” group with mice kept at standard vivarium conditions (n=5). The expression level of genes encoding synaptic proteins in the central nervous system was estimated by a real-time polymerase chain reaction.

Results. There were no statistically significant differences between the studied groups regarding the Tph2, Htr1b, and Htr2a expressions in the cervical and lumbar enlargement of the spinal cord. Compared to the “Control” group, a statistically significant increase (6.3 times) in the level of Slc6a4 expression in the lumbar spinal cord was revealed after microgravity exposure simulation (“Unloading” group), followed by a 3-fold decrease during the readaptation period (“Recovery” group ).

Conclusion. The expression level of the Slc6a4 gene, which encodes carrier protein involved in the function of serotonergic synapses, may indicate the potential involvement of this neurotransmitter system in the pathogenesis of movement disorders after microgravity exposure simulation on earth.

Keywords

serotonin (5-hydroxytryptamine) / antiorthostatic unloading / spinal cord / real-time polymerase chain reaction (RT-PCR) / Slc6a4 / Tph2 / Htr1b / Htr2a

Cite this article

Download citation ▾
M S Kuznetsov, A N Lisyukov, M A Davleeva, A A Izmailov. Slc6a4, Tph2, Htr1b, Htr2a genes expression in the mouse spinal cord after microgravity exposure simulation on earth. Kazan medical journal, 2020, 101(5): 698-703 DOI:10.17816/KMJ2020-698

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Edgerton V.R., Roy R.R. Invited review: gravitational biology of the neuromotor systems: a perspective to the next era. J. Appl. Physiol. 2000; 89: 1224–1231. DOI: 10.1152/jappl.2000.89.3.1224.

[2]

Hides J., Lambrecht G., Ramdharry G. et al. Parallels between astronauts and terrestrial patients — Taking phy­siotherapy rehabilitation “To infinity and beyond”. Musculoskelet. Sci. Pract. 2017; 27 (1): S32–S37. DOI: 10.1016/j.msksp.2016.12.008.

[3]

Scott J.M., Warburton D.E.R., Williams D. et al. Challenges, concerns and common problems: physiological consequences of spinal cord injury and microgravity. Spinal Cord. 2011; 49: 4–16. DOI: 10.1038/sc.2010.53.

[4]

Kuznetsov M.S., Lisukov A.N., Rizvanov A.A. et al. Bioinformatic study of transcriptome changes in the mice lumbar spinal cord after the 30-day spaceflight and subsequent 7-day readaptation on Earth: New insights into molecular mechanisms of the hypogravity motor syndrome. Front. Pharmacol. 2019; 10: 747. DOI: 10.3389/fphar.2019.00747.

[5]

Lisyukov A.N., Izmaylov A.A., Kuznetsov M.S. et al. Spinal cord neuroplasticity in tail-suspended mice. Aviakosmicheskaya i ekolo­gicheskaya meditsina. 2019; 53 (6): 94–97. (In Russ.) DOI: 10.21687/0233-528X-2019-53-6-94-97.

[6]

Лисюков А.Н., Измайлов А.А., Кузнецов М.С. и др. Нейропластичность спинного мозга мышей в условиях антиортостатического вывешивания. Авиакосм. и экол. мед. 2019; 53 (6): 94–97. DOI: 10.21687/0233-528X-2019-53-6-94-97.

[7]

Perrin F.E., Noristani H.N. Serotonergic mechanisms in spinal cord injury. Exp. Neurol. 2019; 318: 174–191. DOI: 10.1016/j.expneurol.2019.05.007.

[8]

Cope T.C. Motor neurobiology of the spinal cord. 1 ed. CRC Press. 2001; 360 р.

[9]

Gackière F., Vinay L. Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord. Front. Neural. Circuits. 2014; 8: 102. DOI: 10.3389/fncir.2014.00102.

[10]

Ghosh M., Pearse D.D. The role of the serotonergic system in locomotor recovery after spinal cord injury. Front. Neural. Circuits. 2014; 8: 151. DOI: 10.1016/j.expneurol.2019.05.007.

[11]

Bardoni R. Serotonergic modulation of nociceptive circuits in spinal cord dorsal horn. Curr. Neuropharmacol. 2019; 17: 1133–1145. DOI: 10.2174/1570159X17666191001123900.

[12]

Murphy D.L., Moya P.R. Human serotonin transporter gene (SLC6A4) variants: their contributions to understanding pharmacogenomic and other functional G×G and G×E differences in health and disease. Curr. Opin. Pharmacol. 2011; 11: 3–10. DOI: 10.1016/j.coph.2011.02.008.

[13]

Pratelli M., Pasqualetti M. Serotonergic neurotransmission manipulation for the understanding of brain development and function: Learning from Tph2 genetic models. Biochimie. 2019; 161: 3–14. DOI: 10.1016/j.biochi.2018.11.016.

[14]

Palacios J.M. Serotonin receptors in brain revisi­ted. Brain Res. 2016; 1645: 46–49. DOI: 10.1016/j.brainres.2015.12.042.

[15]

D’Amico J.M., Li Y., Bennett D.J. et al. Reduction of spinal sensory transmission by facilitation of 5-HT1B/D receptors in noninjured and spinal cord-injured humans. J. Neurophysiol. 2013; 109: 1485–1493. DOI: 10.1152/jn.00822.2012.

[16]

Gackière F., Vinay L. Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord. Front. Neural Circuits. 2014; 8: 102. DOI: 10.3389/fncir.2014.00102.

[17]

Genin A.M., Ilyin E.A., Kaplansky A.S. Bio­ethic rules of research with humans and animals in aviation, space and marine medicine. Aviakosmicheskaya i ekolo­gicheskaya meditsina. 2001; 35 (4):14–20. (In Russ.)

[18]

Генин А.М., Ильин Е.А., Капланский А.С. Био­этические правила проведения исследований на человеке и животных в авиационной, космической и морской медицине. Авиакосм. и экол. мед. 2001; 35 (4): 14–20.

[19]

Morey-Holton E.R., Globus R.K. Hindlimb unloa­ding rodent model: technical aspects. J. Appl. Physiol. 2002; 92: 1367–1377. DOI: 10.1152/japplphysiol.00969.2001.

[20]

Andreev-Andrievskiy A., Popova A., Boyle R. et al. Mice in Bion-M 1 space mission: Training and selection. PLoS One. 2014; 9 (8): e104830. DOI: 10.1371/journal.pone.0104830.

[21]

R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing. Austria, Vienna. 2017. Available online www.r-project.org (access date: 14.02.2019).

[22]

Bos R., Sadlaoud K., Boulenguez P. et al. Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2. Proc. Natl. Acad. Sci. USA. 2013; 2 (110 (1)): 348–353. DOI: 10.1073/pnas.1213680110.

[23]

Gerin C.G., Hill A., Hill S. et al. Serotonin release variations during recovery of motor function after a spinal cord injury in rats. Synapse. 2010; 64 (11): 855–861. DOI: 10.1002/syn.20802.

[24]

Hayashi Y., Jacob-Vadakot S., Dugan E.A. et al. 5-HT precursor loading, but not 5-HT receptor agonists, increases motor function after spinal cord contusion in adult rats. Exp. Neurol. 2010; 221 (1): 68–78. DOI: 10.1016/j.exp­neurol.2009.10.003.

RIGHTS & PERMISSIONS

Kuznetsov M.S., Lisyukov A.N., Davleeva M.A., Izmailov A.A.

AI Summary AI Mindmap
PDF (391KB)

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/