Approaches to antithrombotic modification of vascular implants

V V Sevostyanova , E O Krivkina , L V Antonova

Kazan medical journal ›› 2020, Vol. 101 ›› Issue (2) : 232 -242.

PDF (323KB)
Kazan medical journal ›› 2020, Vol. 101 ›› Issue (2) : 232 -242. DOI: 10.17816/KMJ2020-232
Reviews
review-article

Approaches to antithrombotic modification of vascular implants

Author information +
History +
PDF (323KB)

Abstract

Vascular implants in contact with blood must have high thrombotic resistance. However, in some cases, their implantation is associated with thrombosis and subsequent impaired patency of the blood vessel. Most often, this problem affects implants intended for reconstruction of small diameter vessels, which is associated with hemodynamic features in this part of the bloodstream. These include blood vessel prostheses, tissue-engineered vascular grafts, and endovascular stents. The features of the implant material are of great importance when choosing a method for its modification in order to improve biocompatibility and thromboresistance. The review analyzes current experience in using various methods of immobilizing drugs to the surface of vascular prostheses and endovascular stents made from stable and biodegradable polymers. The prospects of creating thromboresistant vascular grafts and stents by joint immobilization on the surface of the polymer material of drugs with antithrombogenic activity and biologically active molecules that regulate the reaction to a foreign body and implant remodeling were evaluated. Numerous studies in the review demonstrating a wide range of ways to modify blood vessel prostheses, tissue-engineered vascular grafts, and endovascular stents with antithrombotic drugs to increase their thrombosis resistance. The main approaches of antithrombotic modification include conjugation of drugs and biologically active molecules on the implant surface. At the same time, new technologies are aimed not only at inhibiting the process of thrombus formation, but also at reducing the intensity of the inflammation process and stimulating the reparation of vascular tissue.

Keywords

vascular prostheses / vascular grafts / endovascular stents / anticoagulants / antiplatelet agents / thromboresistance / biodegradable polymers

Cite this article

Download citation ▾
V V Sevostyanova, E O Krivkina, L V Antonova. Approaches to antithrombotic modification of vascular implants. Kazan medical journal, 2020, 101(2): 232-242 DOI:10.17816/KMJ2020-232

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pashneh-Tala S., MacNeil S., Claeyssens F. The tissue-engineered vascular graft — past, present, and future. Tissue Eng. Part. B. Rev. 2016; 22 (1): 68–100. DOI: 10.1089/ten.teb.2015.0100.

[2]

Nakamura K., Keating J.H., Edelman E.R. Pathology of endovascular stents. Interv. Cardiol. Clin. 2016; 5 (3): 391–403. DOI: 10.1016/j.iccl.2016.02.006.

[3]

Hiob M.A., She S., Muiznieks L.D., Weiss A.S. Biomaterials and modifications in the development of small-­diameter vascular grafts. ACS Biomater. Sci. Eng. 2017; 3 (5): 712–723. DOI: 10.1021/acsbiomaterials.6b00220.

[4]

Shoji T., Shinoka T. Tissue engineered vascular grafts for pediatric cardiac surgery. Transl. Pediatr. 2018; 7 (2): 188–195. DOI: 10.21037/tp.2018.02.01.

[5]

Radke D., Jia W., Sharma D. et al. Tissue engineering at the blood-contacting surface: A review of challenges and strategies in vascular graft development. Adv. Healthc. Mater. 2018; 7 (15): 1701461. DOI: 10.1002/adhm.201701461.

[6]

Ren X., Feng Y., Guo J. et al. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem. Soc. Rev. 2015; 44 (15): 5680–5742. DOI: 10.1039/c4cs00483c.

[7]

Maitz M.F., Martins M.C.L., Grabow N. et al. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta. Biomater. 2019; 94: 33–43. DOI: 10.1016/j.actbio.2019.06.019.

[8]

Linhardt R.J. 2003 Claude S, Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. J. Med. Chem. 2003; 19: 2551–2554. DOI: 10.1021/jm030176m.

[9]

Sasisekharan R., Venkataraman G. Heparin and he­paran sulfate: biosynthesis, structure and function. Curr. Opin. Chem. Biol. 2000; 4 (6): 626–631. DOI: 10.1016/s1367-5931(00)00145-9.

[10]

Linhardt R.J., Murugesan S., Xie J. Immobilization of heparin: approaches and applications. Curr. Top. Med. Chem. 2008; 8 (2): 80–100. DOI: 10.2174/1568026087­83378891.

[11]

Sakiyama-Elbert S.E. Incorporation of heparin into biomaterials. Acta. Biomater. 2014; 10 (4): 1581–1587. DOI: 10.1016/j.actbio.2013.08.045.

[12]

Cannon C.P., Tracy R. Clotting for the clinician: an overview of thrombosis and antithrombotic therapy. J. Thromb. Thrombolysis. 1995; 2 (2): 95–106. DOI: 10.1007/bf01064376.

[13]

Wallén N.H., Ladjevardi M., Albert J., Bröijersén A. Influence of different anticoagulants on platelet aggregation in whole blood; a comparison between citrate, low molecular mass heparin and hirudin. Thromb. Res. 1997; 87 (1): 151–157. DOI: 10.1016/s0049-3848(97)00114-x.

[14]

Aronson J.K. Side effects of drugs annual 26: A world-wide yearly survey of new data and trends in ­adverse drug reactions. Elsevier. 2003; 662 p.

[15]

Hogg K., Weitz J.I. Blood coagulation and anticoa­gulant, fibrinolytic, and antiplatelet drugs. In: Goodman & Gilman’s: the pharmacological basis of therapeutics. 13th ed. New York: McGraw-Hill. 2017; 849–876.

[16]

Willard J.E., Lange R.A., Hillis L.D. The use of aspirin in ischemic heart disease. New Engl. J. Med. 1992; 327 (3): 175–181. DOI: 10.1056/NEJM199207163270308.

[17]

Topaz O. Cardiovascular thrombus: From pathology and clinical presentations to imaging, pharmacotherapy and interventions. Academic Press. 2018; 670 p.

[18]

Grant S.M., Goa K.L. Iloprost. A review of its pharmacodynamic and pharmacokinetic properties, and the­rapeutic potential in peripheral vascular disease, myocar­dial ischaemia and extracorporeal circulation procedures. Drugs. 1992; 43 (6): 889–924. DOI: 10.2165/00003495-199243060-00008.

[19]

Shapiro J.R. Transient migratory osteoporosis in osteogenesis imperfecta. In: Osteogenesis Imperfecta. Acade­mic Press. 2014; 359–370. DOI: 10.1016/B978-0-12-397165-4.00039-3.

[20]

Lin P.H., Bush R.L., Yao Q. et al. Evaluation of platelet deposition and neointimal hyperplasia of heparin-coated small-caliber ePTFE grafts in a canine femoral artery bypass model. J. Surg. Res. 2004; 118 (1): 45–52. DOI: 10.1016/j.jss.2003.12.026.

[21]

Freeman J., Chen A., Weinberg R.J. et al. Sustained thromboresistant bioactivity with reduced intimal hyperplasia of heparin-bonded polytetrafluoroethylene ­propaten graft in a chronic canine femoral artery bypass ­model. Ann. Vasc. Surg. 2018; 49: 295–303. DOI: 10.1016/j.avsg.2017.09.017.

[22]

Al Meslmani B., Mahmoud G., Strehlow B. et al. Development of thrombus-resistant and cell compatible crimped polyethylene terephthalate cardiovascular grafts using surface co-immobilized heparin and collagen. Mater. Sci. Eng. C. Mater. Biol. Appl. 2014; 43: 538–546. DOI: 10.1016/j.msec.2014.07.059.

[23]

Zhu A.P., Ming Z., Jian S. Blood compatibility of chitosan/heparin complex surface modified ePTFE vascular graft. Applied Surf. Sci. 2005; 241 (3–4): 485–492. DOI: 10.1016/j.apsusc.2004.07.055.

[24]

Greco R.S., Kim H.C., Donetz A.P., Harvey R.A. Patency of a small vessel prosthesis bonded to tissue plasminogen activator and iloprost. Ann. Vasc. Surg. 1995; 9 (2): 140–145. DOI: 10.1007/BF02139655.

[25]

Heise M., Schmidmaier G., Husmann I. et al. PEG-hirudin/iloprost coating of small diameter ePTFE grafts effectively prevents pseudointima and intimal hyperplasia development. Eur. J. Vasc. Endovasc. Surg. 2006; 32 (4): 418–424. DOI: 10.1016/j.ejvs.2006.03.002.

[26]

Biran R., Pond D. Heparin coatings for improving blood compatibility of medical devices. Adv. Drug Deliv. Rev. 2017; 112: 12–23. DOI: 10.1016/j.addr.2016.12.002.

[27]

Duan H.Y., Ye L., Wu X. et al. The in vivo characterization of electrospun heparin-bonded polycaprolactone in small-diameter vascular reconstruction. Vascular. 2015; 23 (4): 358–365. DOI: 10.1177/1708538114550737.

[28]

Norouzi S.K., Shamloo A. Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019; 94: 1067–1076. DOI: 10.1016/j.msec.2018.10.016.

[29]

Yao Y., Wang J., Cui Y. et al. Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta. Biomater. 2014; 10 (6): 2739–2749. DOI: 10.1016/j.actbio.2014.02.042.

[30]

Aslani S., Kabiri M., Kehtari M., Hanaee-Ahvaz H. Vascular tissue engineering: Fabrication and characterization of acetylsalicylic acid-loaded electrospun scaffolds coated with amniotic membrane lysate. J. Cell Physiol. 2019; 234 (9): 16080–1609. DOI: 10.1002/jcp.28266.

[31]

Gao J., Jiang L., Liang Q. et al. The grafts modified by heparinization and catalytic nitric oxide generation used for vascular implantation in rats. Regen. Biomater. 2018; 5 (2): 105–114. DOI: 10.1093/rb/rby003.

[32]

Hu Y.T., Pan X.D., Zheng J. et al. In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF. Int. J. Surg. 2017; 44: 244–249. DOI: 10.1016/j.ijsu.2017.06.077.

[33]

Wang W., Liu D., Li D. et al. Nanofibrous vascular scaffold prepared from miscible polymer blend with he­parin/stromal cell-derived factor-1 alpha for enhan­cing anticoagulation and endothelialization. Colloids Surf. B. Biointerfaces. 2019; 181: 963–972. DOI: 10.1016/j.colsurfb.2019.06.065.

[34]

Kuang H., Yang S., Wang Y. et al. Electrospun bilayer composite vascular graft with an inner layer modified by polyethylene glycol and haparin to regenerate the blood vessel. J. Biomed. Nanotechnol. 2019; 15 (1): 77–84. DOI: 10.1166/jbn.2019.2666.

[35]

Mori H., Gupta A., Torii S. et al. Clinical implications of blood-material interaction and drug eluting stent polymers in review. Expert Rev. Med. Devices. 2017; 14 (9): 707–716. DOI: 10.1080/17434440.2017.1363646.

[36]

Van der Giessen W.J., Lincoff A.M., Schwartz R.S. et al. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coro­nary arteries. Circulation. 1996; 94: 1690–1697. DOI: 10.1161/01.cir.94.7.1690.

[37]

Alt E., Haehnel I., Beilharz C. et al. Inhibition of neointima formation after experimental coronary artery stenting: a new biodegradable stent coating releasing hirudin and the prostacyclin analogue iloprost. Circulation. 2000; 101 (12): 1453–1458. DOI: 10.1161/01.cir.101.12.1453.

[38]

Lee C.H., Lin Y., Cjhang S. et al. Local sustained delivery of acetylsalicylic acid via hybrid stent with biodegradable nanofibers reduces adhesion of blood cells and promotes reendothelialization of the denuded artery. Int. J. Nanomedicine. 2014; 9: 311–326. DOI: 10.2147/IJN.S51258.

[39]

Choi D.H., Kang S.N., Kim S.M. et al. Growth factors-loaded stents modified with hyaluronic acid and hepa­rin for induction of rapid and tight re-endothelialization. Colloids Surf. B. Biointerfaces. 2016; 141: 602–610. DOI: 10.1016/j.colsurfb.2016.01.028.

[40]

Wang J., An Q., Li D. et al. Heparin and vascular endothelial growth factor loaded poly (L-lactide-co-caprolactone) nanofiber covered stent-graft for aneurysm treatment. J. Biomed. Nanotechnol. 2015; 11 (11): 1947–1960. DOI: 10.1166/jbn.2015.2138.

[41]

Liu P., Liu Y., Li P. et al. Rosuvastatin and heparin-loaded poly (l-lactide-co-caprolactone) nanofiber aneurysm stent promotes endothelialization via vascular endothelial growth factor type A modulation. ACS Appl. Mater. Interfa­ces. 2018; 10 (48): 41012–41018. DOI: 10.1021/acsami.8b11714.

[42]

Janjic M., Pappa F., Karagkiozaki V. et al. Surface modification of endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning. Int. J. Nanomedicine. 2017; 12: 6343–6355. DOI: 10.2147/IJN.S138261.

[43]

Liu Z., Li G., Zheng Z. et al. Silk fibroin-based woven endovascular prosthesis with heparin surface modification. J. Mater. Sci. Mater. Med. 2018; 29 (4): 46. DOI: 10.1007/s10856-018-6055-3.

[44]

Liu Z., Zheng Z., Chen K. et al. A heparin-functionalized woven stent graft for endovascular exclusion. Colloids Surf. B. Biointerfaces. 2019; 180: 118–126. DOI: 10.1016/j.colsurfb.2019.04.027.

[45]

Daenens K., Schepers S., Fourneau I. et al. Heparin-bonded ePTFE grafts compared with vein grafts in fe­moropopliteal and femorocrural bypasses: 1- and 2-year results. J. Vasc. Surg. 2009; 49 (5): 1210–1216. DOI: 10.1016/j.jvs.2008.12.009.

[46]

Samson R.H., Morales R., Showalter D.P. et al. Heparin-bonded expanded polytetrafluoroethylene femo­ropopliteal bypass grafts outperform expanded polytetrafluoroethylene grafts without heparin in a long-term comparison. J. Vasc. Surg. 2016; 64 (3): 638–647. DOI: 10.1016/j.jvs.2016.03.414.

[47]

Piffaretti G., Dorigo W., Castelli P. et al. Results from a multicenter registry of heparin-bonded expan­ded polytetrafluoroethylene graft for above-the-knee femoropopliteal bypass. J. Vasc. Surg. 2018; 67 (5): 1463–1471. DOI: 10.1016/j.jvs.2017.09.017.

[48]

Mehran R., Nikolsky E., Camenzind E. et al. An Internet-based registry examining the efficacy of heparin coating in patients undergoing coronary stent implantation. Am. Heart J. 2005; 150 (6): 1171–1176. DOI: 10.1016/j.ahj.2005.01.027.

RIGHTS & PERMISSIONS

Sevostyanova V.V., Krivkina E.O., Antonova L.V.

AI Summary AI Mindmap
PDF (323KB)

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/