Reaction of the hemostatic system in response to hypercapnic hypoxia of maximum intensity ­depending on different types of preconditioning

S V Moskalenko , I I Shakhmatov , I V Kovalev , K I Shakhmatova , V M Vdovin

Kazan medical journal ›› 2019, Vol. 100 ›› Issue (4) : 642 -649.

PDF
Kazan medical journal ›› 2019, Vol. 100 ›› Issue (4) : 642 -649. DOI: 10.17816/KMJ2019-642
Experimental medicine
research-article

Reaction of the hemostatic system in response to hypercapnic hypoxia of maximum intensity ­depending on different types of preconditioning

Author information +
History +
PDF

Abstract

Aim. To study the adaptation reactions of the hemostasis system to hypercapnic hypoxia of maximum intensity in rats subjected to preliminary multiple exposure to ethylmethylhydroxypyridine succinate and hypercapnic hypoxia of submaximal intensity.

Methods. In the experiment, Wistar male rats (80 individuals) were used. Training cycles: 30-fold daily exposure to hypercapnic hypoxia of submaximal intensity (20 minutes — 9.0±0.5% O2, 7.0±0.5% CO2); administration of ethylmethylhydroxypyridine succinate (50 mg/kg) to animals for 30 days; combined effects of the two described modes. Tested experimental exposure was simulated as a single hypercapnic hypoxia of maximum intensity (20 minutes — 5.0±0.5% O2, 5.0±0.5% CO2) at the end of each of three 30-day training cycles.

Results. Preliminary 30-day exposure to both isolated hypercapnic hypoxia of submaximal intensity and combined exposure to ethylmethylhydroxypyridine succinate contributes to hypocoagulation shift in the hemostasis system and reduces the level of the markers of pre-thrombotic state in response to a single hypercapnic hypoxia of maximum intensity. The state of the hemostasis system after 30-day cycle of isolated use of an antihypoxant is characterized by the inhibition of the vascular-platelet system of the hemostasis system and preserved hypercoagulation shifts in its plasma unit. The obtained results suggest that both preliminary isolated effect of hypercapnic hypoxia of submaximal intensity and the combined effect of hypercapnic hypoxia and ethylmethylhydroxypyridine succinate increase the resistance of the hemostasis system in experimental animals to acute hypercapnic hypoxia of maximum intensity compared to rats of the control group. This was confirmed by the inhibition of the vascular-platelet system, hypocoagulation in the plasma unit, decrease in the level of thrombotic readiness markers and increase in the anticoagulant activity of the blood system compared to the control. At the same time, isolated course administration of ethylmethylhydroxypyridine succinate did not cause the same amount of adaptive changes to maximum intensity hypercapnic hypoxia, since only platelet suppression of the hemostasis and hypocoagulation via the internal coagulation pathway were registered.

Conclusion. Isolated exposure of hypercapnic hypoxia of submaximal intensity and its combined exposure with ethylmethylhydroxypyridine succinate increase the resistance of the hemostasis system to acute hypercapnic hypoxia of maximum intensity; isolated course administration of ethylmethylhydroxypyridine succinate does not cause the same amount of adaptive changes.

Keywords

hemostasis / hypercapnic hypoxia / ethylmethylhydroxypyridine succinate

Cite this article

Download citation ▾
S V Moskalenko, I I Shakhmatov, I V Kovalev, K I Shakhmatova, V M Vdovin. Reaction of the hemostatic system in response to hypercapnic hypoxia of maximum intensity ­depending on different types of preconditioning. Kazan medical journal, 2019, 100(4): 642-649 DOI:10.17816/KMJ2019-642

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Malkova Ya.G., Kal’chenko G. The use of various models of hypoxia in experimental pharmacology. Molodoy uchenyy. 2010; (3): 318–319. (In Russ.)

[2]

Малкова Я.Г., Кальченко Г. Использование различных моделей гипоксии в экспериментальной фармакологии. Молодой учёный. 2010; (3): 318–319.

[3]

Sukhover­shin A.V., Pantin A.V., Sukhovershin R.A. et al. Rehabilitation treatment of patients with neurasthenia with the use of hypercapnic hypoxia in the conditions of a spa resort. Sibirskiy vestnik psikhiatrii i narkologii. 2009; (1): 127–129. (In Russ.)

[4]

Суховершин А.В., Пантин А.В., Суховершин Р.А. и др. Восстановительное лечение больных неврастенией с применением гиперкапнической гипоксии в условиях бальнеологического курорта. Сибирский вестн. психиатр. и наркол. 2009; (1): 127–129.

[5]

Danilov A.N., Lobanov Yu.F., Seroshtanova E.V. et al. Clinical observation of the course of bronchial asthma in a preschool child training in hypercapnic hypoxia on a carbonic simulator. Sovremennye problemy nauki i obrazovaniya. 2013; (6): 594–603 (In Russ.)

[6]

Данилов А.Н., Лобанов Ю.Ф., Сероштанова Е.В. и др. Клиническое наблюдение за течением бронхиальной астмы у ребёнка дошкольного возраста, тренирующегося в условиях гиперкапнической гипоксии на тренажере «карбоник». Соврем. пробл. науки и образования. 2013; (6): 594–603.

[7]

Pechkina K.G., Kulikov V.P., Shcherbakov P.L., Lobanov Yu.F. Treatment of chronic erosive gastroduodenitis in children using hypercapnic hypoxia. Gastroenterologiya eksperimental'naya i klinicheskaya. 2011; (1): ­28–30. (In Russ.)

[8]

Печкина К.Г., Куликов В.П., Щербаков П.Л., Лобанов Ю.Ф. Лечение хронического эрозивного гастродуоденита у детей с использованием гиперкапнической гипоксии. Гастроэнтерол. эксперим. и клин. 2011; (1): 28–30.

[9]

Senin I.P., Mishustin Yu.N. Hypercapnic training as a means of eliminating tissue hypoxia. Zhurnal of GrSMU. 2006; (1): 81–83. (In Russ.)

[10]

Сенин И.П., Мишустин Ю.Н. Гиперкапническая тренировка как средство устранения тканевой гипоксии. Ж. ГрГМУ. 2006; (1): 81–83.

[11]

Shakhmatov I.I., Vdovin V.M., Kiselev V.I. The state of the hemostasis system in various types of hypoxic exposure. Byulleten’ SORAMN. 2010; (2): 131–138. (In Russ.)

[12]

Шахматов И.И., Вдовин В.М., Киселёв В.И. Состояние системы гемостаза при различных видах гипоксического воздействия. Бюлл. СОРАМН. 2010; (2): 131–138.

[13]

Schobersberger W., Hoffmann G., Gunga H. Interаktionen von Hypoxie und Hämostase — Hypoxie als prothrombotischer Faktor in der Höhe? Wien. Med. Wochenschr. 2005; 155: 157–162. DOI: 10.1007/s10354-005-0163-7.

[14]

Kuznik B.I. Kletochnye i molekulyarnye mekhanizmy regulyatsii sistemy gemostaza v norme i patologii. (Cellular and molecular mechanisms of hemostatic system regulation in norm and pathology.) Chita: Ekspress izdatel'stvo. 2010; 832 p. (In Russ).

[15]

Кузник Б.И. Клеточные и молекулярные механизмы регуляции системы гемостаза в норме и патологии. Чита: Экспресс-издательство. 2010; 832 с.

[16]

Novikov V.E., Levchenkova O.S., Pozhilova E.V. Preconditioning as a method of metabolic adaptation of the organism to conditions of hypoxia and ischemia. Vestnik Smolenskoy gosudarstvennoy meditsinskoy akademii. 2018; (1): 69–79. (In Russ.)

[17]

Новиков В.Е., Левченкова О.С., Пожилова Е.В. Прекондиционирование как способ метаболической адаптации организма к состояниям гипоксии и ишемии. Вестн. Смоленской гос. мед. академии. 2018; (1): 69–79.

[18]

Bespalov A.G., Kulikov V.P., Lepilov A.V. Training with hypoxic hypercapnia as a means of increasing brain tole­rance to ischemia. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2004; (3): 60–64. (In Russ.)

[19]

Беспалов А.Г., Куликов В.П., Лепилов А.В. Тренировки с гипоксической гиперкапнией как средство увеличения толерантности головного мозга к ишемии. Патол. кровообращения и кардиохир. 2004; (3): ­60–64.

[20]

Kulikov V.P., Bespa­lov A.G., Yakushev N.N. The effectiveness of hypercapnic hypoxia in increasing the tolerance of the brain to ische­mia. Vestnik vosstanovitel'noy meditsiny. 2009; (5): 22–31. (In Russ.)

[21]

Куликов В.П., Беспалов А.Г., Якушев Н.Н. Эффективность гиперкапнической гипоксии в повышении толерантности головного мозга к ишемии. Вестн. восстановит. мед. 2009; (5): 22–31.

[22]

Moskalenko S.V. The hemostasis system in rats with isolated and combined effects of Mexi­dol and hypoxic hypoxia using the method of thromboelastography. Fundamental'nye i prikladnye issledova­niya. 2016; (27): 34–43. (In Russ.)

[23]

Москаленко С.В. Система гемостаза у крыс при изолированном и сочетанном воздействии мексидола и гипоксической гипоксии с использованием метода тромбоэластографии. Фундаментал. и прикладные исслед. 2016; (27): 34–43.

[24]

Stratienko E.N., Petukhova N.F. Search for means of pharmacological correction of hypoxic states. Vestnik Bryans­kogo gosudarstvennogo universiteta. 2012; 4 (2): 232–234. (In Russ.)

[25]

Стратиенко Е.Н., Петухова Н.Ф. Поиск средств фармакологической коррекции гипоксических состояний. Вестн. Брянского гос. ун-та. 2012; 4 (2): 232–234.

[26]

Srubilin D.V., Enikeev D.A., Myshkin V.A. Antiradical and antioxidant activity of the complex compound of 5-hydroxy-6-methyluracil with succinic acid and its efficacy in hypoxic conditions. Fundamental'nye issledovaniya. 2011; (6): 166–170. (In Russ.)

[27]

Срубилин Д.В., Еникеев Д.А., Мышкин В.А. Антирадикальная и антиоксидантная активность комплексного соединения 5-окси-6-метилурацила с янтарной кислотой и его эффективность при гипоксических состояниях. Фундаментал. исслед. 2011; (6): 166–170.

[28]

Yasnetsov V.V., Smirnov L.D. The effectiveness of new 3-hydroxypyridine derivatives with antioxidant activity, with various types of hypoxia. Proceedings of the international conference Bioantioxidant. Moscow. 2006; 292–293. (In Russ.)

[29]

Яснецов В.В., Смирнов Л.Д. Эффективность новых производных 3-гидроксипиридина, обладающих антиоксидантной активностью, при различных видах гипоксии. Труды международной конференции Биоантиоксидант. Москва. 2006; 292–293.

[30]

Council Directive of 24 November 1986 on the Approximation of Laws, Regulations of the Member States Regarding the Protection of Animals Used for Experimental and Other Purposes Directive (86/609/EEC). Official J. Eur. Communities L. 262; 1–29.

[31]

Khabriev P.U. Rukovodstvo po eksperimental'nomu (doklinicheskomu) izucheniyu novykh farmakologicheskikh veshchestv. (Ma­nual on experimental (preclinical) study of new pharmacological substances.) Moscow: Meditsina. 2005; 832 р. (In Russ.)

[32]

Хабриев Р.У. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. М.: Медицина. 2005; 832 с.

[33]

Moskalenko S.V., Shakhmatov I.I., Bondarchuk Yu.A. et al. The reaction of the hemostasis system in hypercapnic hypoxia after the course of the application of Mexidol using the method of thromboelastography. Kazanskiy Meditsinskiy Zhurnal. 2018; 99 (6): 919–924. (In Russ.)

[34]

Москаленко С.В., Шахматов И.И., Бондарчук Ю.А. и др. Реакция системы гемостаза при гиперкапнической гипоксии после курсового применения мексидола с использованием метода тромбоэластографии. Казанский мед. ж. 2018; 99 (6): 919–924. DOI: 10.17816/KMJ2018-936.

[35]

Chukaev S.A. Evaluation of the pharmacotherapeutic efficacy of Mexidol as a means of correc­ting hypoxic ischemic and reoxygenation damages. Vestnik Buryatskogo gosudarstvennogo universiteta. 2014; (12): 19–24. (In Russ.)

[36]

Чукаев С.А. Оценка фармакотерапевтической эффективности мексидола в качестве средства коррекции гипоксических ишемических и реоксигенационных повреждений. Вестн. Бурятского гос. ун-та. 2014; (12): 19–24.

[37]

Rachkov A.G., Rach­kova L.G., Daniyarov S.B. The effect of acute blood loss on hemostasis in dogs unadapted to the conditions of high mountains. Patologicheskaya fiziologiya i eksperimental'naya terapiya. 1990; (5): 28–30. (In Russ.)

[38]

Рачков А.Г., Рачкова Л.Г., Данияров С.Б. Влияние острой кровопотери на гемостаз у неадаптированных к условиям высокогорья собак. Патол. ­физиол. и эксперим. терап. 1990; (5): 28–30.

[39]

Shevchenko Yu.L. Gipoksiya. Adaptatsiya, patogenez, klinika. (Hypoxia. Adaptation, pathogenesis, clinic.) Saint. Petersburg: Elbi-SPb. 2000; 384 р. (In Russ.)

[40]

Шевченко Ю.Л. Гипоксия. Адаптация, патогенез, клиника. СПб.: Элби-СПб. 2000; 384 с.

[41]

Shakhmatov I.I., Nosova M.N., Bondarchuk Yu.A. Anticoagulant properties of Eleutherococcus. Khimiya rastitel'nogo syr'ya. 2011; (3): 179–182. (In Russ.)

[42]

Шахматов И.И., Носова М.Н., Бондарчук Ю.А. Антикоагулянтные свойства элеутерококка. Химия растительного сырья. 2011; (3): 179–182.

[43]

Chereshnev V.A., Yushkov B.G., Klimin V.G., Lebedeva E.V. Immunofiziologiya. (Immunophysiology.) Ekaterinburg: UrORAN. 2002; 260 р. (In Russ.)

[44]

Черешнев В.А., Юшков Б.Г., Климин В.Г., Лебедева Е.В. Иммунофизиология. Екатеринбург: УрОРАН. 2002; 260 с.

[45]

Zhang Z.G., Chopp M., Goussev A. et al. Cerebral microvascular obstruction by fibrin is associated with upregulation of PAI-1 acutely after onset of focal embolic ischemia in rats. J. Neurosci. 1999; 19 (24): 10 898–10 907. DOI: 10.1523/JNEUROSCI.19-24-10898.1999.

RIGHTS & PERMISSIONS

Moskalenko S.V., Shakhmatov I.I., Kovalev I.V., Shakhmatova K.I., Vdovin V.M.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/