Molecular mechanisms and clinical significance of fibrinolysis
R I Litvinov
Kazan medical journal ›› 2013, Vol. 94 ›› Issue (5) : 711 -718.
Molecular mechanisms and clinical significance of fibrinolysis
Fibrinolysis is the process of proteolytic digestion of fibrin aimed in vivo at dissolving clots or thrombi to restore the blood flow. In blood, the fibrinolytic system comprises a network of interrelated biochemical reactions that occur predominantly on the surface of fibrin fibers, the structural scaffold of hemostatic clots and obstructive thrombi. This review provides a brief description of the fibrinolytic system components and of the most important fibrinolytic reactions, including their modulation. The central enzyme in fibrinolysis is plasmin, a serine protease formed from its inactive precursor, plasminogen, upon the action of proteins and enzymes, whose formation and/or activation is triggered by various pathological stimuli. Plasmin cleaves a variety of substrates other than fibrin and therefore is involved in a number of biological processes other than hemostasis and thrombosis. There are several mechanisms moderating the activity of fibrinolytic enzymes that may become altered in various diseases. When the ratio of blood pro-and antifibrinolytic compounds is altered, hyper-or hypofibrinolysis might develop that causes and/or exacerbates hemorrhage or thrombosis, respectively. The paper contains an original pathogenic classification of fibrinolytic disorders and describes mechanisms of the primary and secondary hypo-and hyperfibrinolysis in various pathological conditions. Diagnosis of fibrinolytic defects builds on clinical symptoms along with defining the time of serum clots dissolving in vitro and serum levels of molecular markers. The principles of laboratory diagnostics of pathological fibrinolysis, based on the comprehension of the molecular mechanisms of normal and impaired fibrinolytic reactions, are reviewed. Treatment of pathological fibrinolysis implies the correction of either hyper-or hypofibrinolytic conditions and, therefore, is based on the administration of either antifibrinolytics (ε-eminocaproic and tranexamic acids) or thrombolytics (mainly, plasminogen activators) in combination with other therapies against bleeding and thrombosis.
fibrin / thrombosis / fibrinolysis / plasminogen / plasmin / thrombolytics
| [1] |
Balami J.S., Chen R., Sutherland B.A., Buchan A.M. Thrombolytic agents for acute ischaemic stroke treatment: the past, present and future // CNS Neurol. Disord. Drug Targets. - 2013. - Vol. 12. - P. 145-154. |
| [2] |
Beckerman Z., Shopen Y., Alon H. et al. Coronary artery bypass grafting after aprotinin: are we doing better? // J. Thorac. Cardiovasc. Surg. - 2013. - Vol. 145. - P. 243-248. |
| [3] |
Bell W.R. Present-day thrombolytic therapy: therapeutic agents-pharmacokinetics and pharmacodynamics // Rev. Cardiovasc. Med. - 2002. - Vol. 3, suppl. 2. - P. 34-44. |
| [4] |
Bennani-Baiti N., Daw H.A. Primary hyperfibrinolysis in liver disease: a critical review // Clin. Adv. Hematol. Oncol. - 2011. - Vol. 9. - P. 250-252. |
| [5] |
Bluth M.H., Kashuk J.L. Whole blood thromboelastometry: another Knight at the Roundtable? // Crit. Care. - 2011. - Vol. 15. - P. 1021. |
| [6] |
Booth N.A., Bennett B. Fibrinolysis and thrombosis // Baillieres Clin. Haematol. - 1994. - Vol. 7. - P. 559-572. |
| [7] |
Carpenter S.L., Mathew P. Alpha2-antiplasmin and its deficiency: fibrinolysis out of balance // Haemophilia. - 2008. - Vol. 14. - P. 1250-1254. |
| [8] |
Collen D., Wiman B. Turnover of antiplasmin, the fast-acting plasmin inhibitor of plasma // Blood. - 1979. - Vol. 53. - P. 313-324. |
| [9] |
Collet J.P., Allali Y., Lesty C. et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis // Arterioscler. Thromb. Vasc. Biol. - 2006. - Vol. 26. - P. 2567-2573. |
| [10] |
Collet J.P., Montalescot G., Lesty C., Weisel J.W. A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots // Circ. Res. - 2002. - Vol. 90. - P. 428- 434. |
| [11] |
Darras V., Thienpont M., Stump D.C., Collen D. Measurement of urokinase-type plasminogen activator (uPA) with an enzyme-linked immunosorbent assay (ELISA) based on three murine monoclonal antibodies // Thromb. Haemost. - 1986. - Vol. 56. - P. 411-414. |
| [12] |
Deitch E.A. Animal models of sepsis and shock: a review and lessons learned // Shock. - 1998. - Vol. 9. - P. 1-11. |
| [13] |
Fay W.P., Murphy J.G., Owen W.G. High concentrations of active plasminogen activator inhibitor-1 in porcine coronary artery thrombi // Arterioscler. Thromb. Vasc. Biol. - 1996. - Vol. 16. - P. 1277-1284. |
| [14] |
Fears R. Binding of plasminogen activators to fibrin: characterization and pharmacological consequences // Biochem. J. - 1989. - Vol. 261. - P. 313-324. |
| [15] |
Fergusson D.A., Hebert P.C., Mazer C.D. et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery // N. Engl. J. Med. - 2008. - Vol. 358. - P. 2319-2331. |
| [16] |
Ferro D., Celestini A., Violi F. Hyperfibrinolysis in liver disease // Clin. Liver Dis. - 2009. - Vol. 13. - P. 21-31. |
| [17] |
Fredenburgh J.C., Nesheim M.E. Lys-plasminogen is a significant intermediate in the activation of Gluplasminogen during fibrinolysis in vitro // J. Biol. Chem. - 1992. - Vol. 267. - P. 26150-26156. |
| [18] |
Gleeson N.C. Cyclic changes in endometrial tissue plasminogen activator and plasminogen activator inhibitor type 1 in women with normal menstruation and essential menorrhagia // Am. J. Obstet. Gynecol. - 1994. - Vol. 171. - P. 178-183. |
| [19] |
Gorog D.A. Prognostic value of plasma fibrinolysis activation markers in cardiovascular disease // J. Am. Coll. Cardiol. - 2010. - Vol. 55. - P. 2701-2709. |
| [20] |
Hack C.E. Fibrinolysis in disseminated intravascular coagulation // Semin. Thromb. Hemost. - 2001. - Vol. 27. - P. 633-638. |
| [21] |
Hayakawa M., Sawamura A., Gando S. et al. Disseminated intravascular coagulation at an early phase of trauma is associated with consumption coagulopathy and excessive fibrinolysis both by plasmin and neutrophil elastase // Surgery. - 2011. - Vol. 149. - P. 221-230. |
| [22] |
Howell N., Senanayake E., Freemantle N., Pagano D. Putting the record straight on aprotinin as safe and effective: results from a mixed treatment meta-analysis of trials of aprotinin // J. Thorac. Cardiovasc. Surg. - 2013. - Vol. 145. - P. 234-240. |
| [23] |
Iwaki T., Tanaka A., Miyawaki Y. et al. Life-threatening hemorrhage and prolonged wound healing are remarkable phenotypes manifested by complete plasminogen activator inhibitor-1 deficiency in humans // J. Thromb. Haemost. - 2011. - Vol. 9. - P. 1200-1206. |
| [24] |
Kashuk J.L., Moore E.E., Sawyer M. et al. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma // Ann. Surg. - 2010. - Vol. 252. - P. 434-442. |
| [25] |
Kiernan T.J., Gersh B.J. Thrombolysis in acute myocardial infarction: current status. // Med. Clin. North. Am. - 2007. - Vol. 91. - P. 617-637. |
| [26] |
Kohli M., Kaushal V., Mehta P. Role of coagulation and fibrinolytic system in prostate cancer // Semin. Thromb. Hemost. - 2003. - Vol. 29. - P. 301-308. |
| [27] |
Levi M. Disseminated intravascular coagulation // Crit. Care Med. - 2007. - Vol. 35. - P. 2191-2195. |
| [28] |
Levi M. Disseminated intravascular coagulation: What’s new? // Crit. Care Clin. - 2005. - Vol. 21. - P. 449-467. |
| [29] |
Lijnen H.R., Van Hoef B., De Cock F. et al. On the mechanism of fibrin-specific plasminogen activation by staphylokinase // J. Biol. Chem. - 1991. - Vol. 266. - P. 11826- 11832. |
| [30] |
Lippi G., Ippolito L., Cervellin G. Disseminated intravascular coagulation in burn injury // Semin. Thromb. Hemost. - 2010. - Vol. 36. - P. 429-436. |
| [31] |
Lippi G., Mattiuzzi C., Favaloro E.J. Novel and emerging therapies: thrombus-targeted fibrinolysis // Semin. Thromb. Hemost. - 2012. - Vol. 39. - P. 48-58. |
| [32] |
Meltzer M.E., Doggen C.J., de Groot P.G. et al. Low thrombin activatable fibrinolysis inhibitor activity levels are associated with an increased risk of a first myocardial infarction in men // Haematologica. - 2009. - Vol. 94. - P. 811-818. |
| [33] |
Nielsen J.D., Gram J., Holm-Nielsen A. et al. Post-operative blood loss after transurethral prostatectomy is dependent on in situ fibrinolysis // Br. J. Urol. - 1997. - Vol. 80. - P. 889-893. |
| [34] |
Raaphorst J., Johan Groeneveld A.B., Bossink A.W., Erik Hack C. Early inhibition of activated fibrinolysis predicts microbial infection, shock and mortality in febrile medical patients // Thromb. Haemost. - 2001. - Vol. 86. - P. 543-549. |
| [35] |
Raza I., Davenport R., Rourke C. et al. The incidence and magnitude of fibrinolytic activation in trauma patients // J. Thromb. Haemost. - 2013. - Vol. 11. - P. 307-314. |
| [36] |
Sabate A., Dalmau A., Koo M. et al. Coagulopathy management in liver transplantation // Transplant. Proc. - 2012. - Vol. 44. - P. 1523-1525. |
| [37] |
Schuster V., Hugle B., Tefs K. Plasminogen deficiency // J. Thromb. Haemost. - 2007. - Vol. 5. - P. 2315-2322. |
| [38] |
Singh N.K., Gupta A., Behera D.R., Dash D. Elevated plasminogen activator inhibitor type-1 (PAI-1) as contributing factor in pathogenesis of hypercoagulable state in antiphospholipid syndrome // Rheumatol. Int. - 2013. - Vol. 33. - P. 2331-2336. |
| [39] |
Slofstra S.H., Spek C.A., Ten Cate H. Disseminated intravascular coagulation // Hematol. J. - 2003. - Vol. 4. - P. 295-302. |
| [40] |
Stein E., McMahon B., Kwaan H. et al. The coagulopathy of acute promyelocytic leukaemia revisited // Best Pract. Res. Clin. Haematol. - 2009. - Vol. 22. - P. 153-163. |
| [41] |
Trzebicki J., Kosieradzki M., Flakiewicz E. et al. Detrimental effect of aprotinin ban on amount of blood loss during liver transplantation: single-center experience // Transplant. Proc. - 2011. - Vol. 43. - P. 1725-1727. |
| [42] |
Van De Craen B., Declerck P.J., Gils A. The biochemistry, physiology and pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo // Thromb. Res. - 2012. - Vol. 130. - P. 576-585. |
| [43] |
Vanek T., Jares M., Snircova J., Maly M. Fibrinolysis in coronary artery surgery: detection by thromboelastography // Interact. Cardiovasc. Thorac. Surg. - 2007. - Vol. 6. - P. 700- 704. |
| [44] |
Varju I., Sotonyi P., Machovich R. et al. Hindered dissolution of fibrin formed under mechanical stress // J. Thromb. Haemost. - 2011. - Vol. 9. - P. 979-986. |
| [45] |
Violi F., Ferro D. Clotting activation and hyperfibrinolysis in cirrhosis: implication for bleeding and thrombosis // Semin. Thromb. Hemost. - 2013. - DOI: 10.1055/s-0033-1334144. |
| [46] |
Weisel J.W. Structure of fibrin: impact on clot stability // J. Thromb. Haemost. - 2007. - Vol. 5, Suppl. 1. - P. 116-124. |
| [47] |
Weisel J.W., Litvinov R.I. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate // Cardiovasc. Hematol. Agents Med. Chem. - 2008. - Vol. 6. - P. 161-180. |
| [48] |
Zeerleder S., Schroeder V., Hack C.E. et al. TAFI and PAI-1 levels in human sepsis // Thromb. Res. - 2006. - Vol. 118. - P. 205-212. |
Litvinov R.I.
/
| 〈 |
|
〉 |