Heat shock proteins - participants in osteoarthrosis pathogenesis
M A Kabalyk , B I Gel’tser , A L Osipov , M F Fadeev
Kazan medical journal ›› 2016, Vol. 97 ›› Issue (5) : 744 -749.
Heat shock proteins - participants in osteoarthrosis pathogenesis
Osteoarthrosis is a disease that affects all tissues of synovial joints, resulting in chronic pain and often a need for replacement. The high prevalence and the lack of reliable conservative approaches impose significant economic sanctions on most economies in the world. Currently the mechanisms of osteoarthrosis progression have been well studied. At the same time, the known pathogenetic concepts do not allow to define reliable targets of conservative treatment. There is a clear need for searching alternative concepts, which will help to expand the understanding of the pathogenesis and identify ways to address therapeutic issues. Heat shock proteins (chaperones) are involved in intra- and extracellular signaling in the pathogenesis of many diseases. The aim of this review is to analyze the current state of the problem of studying the role of heat shock proteins in the pathogenesis of osteoarthrosis. The review considers the fundamental aspects of the activation and functioning of chaperones, experience of studying chondrocyte heat shock proteins is described, issues of programmed cell death mechanisms are mentioned, scheme of shaperone activity in osteoarthrosis is illustrated. The role of heat shock proteins from the perspectives of reparation and alteration carried out in the articular cartilage is described, the prospects for further clarification of their role in the pathogenesis of osteoarthrosis are identified. The role of two key molecules - protein with molecular weight of 70 kD and a small molecule with molecular weight of 27 kD, is emphasized. Heat shock proteins are of fundamental and applicative interest from the perspective of their participation in the key ways of osteoarthrosis pathogenesis and phenomena (oxidative, microcrystalline, hydrodynamical, stress, aging, etc.). Further study of heat shock proteins will allow to significantly expand the knowledge of osteoarthrosis and to identify ways of targeted therapy.
chaperone / heat shock protein / osteoarthrosis / apoptosis / inflammation / oxidative stress
| [1] |
Кабалык М.А., Дубиков А.И., Петрикеева Т.Ю. и др. Феномен микрокристаллического стресса при остеоартрозе. Тихоокеан. мед. ж. 2014; 1: 70-74. |
| [2] |
Кабалык М.А., Дубиков А.И., Петрикеева Т.Ю. Методы обнаружения кристаллов в суставном хряще: Status praesens. Часть 1. Науч.-практ. ревматол. 2012; 52 (3): 87-91. |
| [3] |
Панасенко О.О., Ким М.В., Гусев Н.Б. Структура и свойства малых белков теплового шока. Успехи биологич. хим. 2003; 43: 59-98. |
| [4] |
Antonelli M.C., Starz T.W. Assessing for risk and progression of osteoarthritis: the nurse’s role: understanding pathophysiology, epidemiology, and risk will aid nurses who are seeking to expand their role in management. Orthop. Nurs. 2012; 31 (2): 98-102. http://dx.doi.org/10.1097/NOR.0b013e31824fcde4 |
| [5] |
Asea A., Kabingu E., Stevenson M.A., Calderwood S.K. HSP70 peptide-bearing and peptide-negative preparations act as chaperokines. Cell Stress Chaperones. 2000; 5 (5): 425-431. http://dx.doi.org/10.1379/1466-1268(2000)005<0425:HPBAPN>2.0.CO;2 |
| [6] |
Bianchi A., Moulin D., Hupont S. et al. Oxidative stress-induced expression of HSP70 contributes to the inhibitory effect of 15d-PGJ2 on inducible prostaglandin pathway in chondrocytes. Free. Radic. Biol. Med. 2014; 76: 114-126. http://dx.doi.org/10.1016/j.freeradbiomed.2014.07.028 |
| [7] |
Cakir S., Hepguler S., Ozturk C. et al. Efficacy of therapeutic ultrasound for the management of knee osteoarthritis: a randomized, controlled, and double-blind study. Am. J. Phys. Med. Rehabil. 2014; 93 (5): 405-412. http://dx.doi.org/10.1097/PHM.0000000000000033 |
| [8] |
Cerella C., Diederich M., Ghibelli L. The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int. J. Cell. Biol. 2010; 2010: 1-14. http://dx.doi.org/10.1155/2010/546163 |
| [9] |
Charette S.J., Lavoie J.N., Lambert H., Landry J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol. Cell. Biol. 2000; 20 (20): 7602-7612. http://dx.doi.org/10.1128/MCB.20.20.7602-7612.2000 |
| [10] |
Gabay O., Clouse K.A. Epigenetics of cartilage diseases. Joint Bone Spine. 2015 Dec. 23. pii: S1297-319X(15)00283-3. http://dx.doi.org/10.1016/j.jbspin.2015.10.004 |
| [11] |
Garrido C., Bruey J.M., Fromentin A. et al. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J. 1999; 13 (14): 2061-2070. |
| [12] |
Hsu H.C., Chang W.M., Wu J.Y. et al. Folate deficiency triggered apoptosis of synoviocytes: Role of overproduction of reactive oxygen species generated via NADPH oxidase / Mitochondrial complex II and calcium perturbation. PLoS One. 2016; 11 (1): e0146440. http://dx.doi.org/10.1371/journal.pone.0146440 |
| [13] |
Huot J., Houle F., Spitz D.R., Landry J. HSP27 phosphorylation-mediated resistanceagainst actin fragmentation and cell death induced by oxidative stress. Cancer Res. 1996; 56 (2): 273-279. |
| [14] |
Inoue H., Arai Y., Kishida T. et al. Hydrostatic pressure influences HIF-2 alpha expression in chondrocytes. Int. J. Mol. Sci. 2015; 16 (1): 1043-1050. http://dx.doi.org/10.3390/ijms16011043 |
| [15] |
Kabalyk M., Dubikov A., Petrikeeva T. et al. Phenomenon of cartilage micro-crystallization in hip osteoarthritis and avascular necrosis of the femoral head. Eur. J. Int. Med. 2013; 24: 117. http://dx.doi.org/10.1016/j.ejim.2013.08.297 |
| [16] |
Lambrecht S., Verbruggen G., Elewaut D., Deforce D. Differential expression of alpha B-crystallin and evidence of its role as a mediator of matrix gene expression in osteoarthritis. Arthritis Rheum. 2009; 60 (1): 179-188. http://dx.doi.org/10.1002/art.24152 |
| [17] |
Lee G.J., Roseman A.M., Saibil H.R., Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 1997; 16 (3): 659-671. http://dx.doi.org/10.1093/emboj/16.3.659 |
| [18] |
Lindner R.A., Carver J.A., Ehrnsperger M. et al. Mouse Hsp25, a small shock protein. The role of its C-terminal extension in oligomerization and chaperone action. Eur. J. Biochem. 2000; 267 (7): 1923-1932. http://dx.doi.org/10.1046/j.1432-1327.2000.01188.x |
| [19] |
Lindner R.A., Kapur A., Carver J.A. The interaction of the molecular chaperone, alpha-crystallin, with molten globule states of bovine alpha-lactalbumin. J. Biol. Chem. 1997; 272 (44): 27722-27729. http://dx.doi.org/10.1074/jbc.272.44.27722 |
| [20] |
Lindquist S., Kim G. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc. Natl. Acad. Sci. USA. 1996; 93 (11): 5301-5306. http://dx.doi.org/10.1073/pnas.93.11.5301 |
| [21] |
Malfait A.M. Osteoarthritis year in review 2015: biology. Osteoarthritis Cartilage. 2016; 24 (1): 21-26. http://dx.doi.org/10.1016/j.joca.2015.09.010 |
| [22] |
Mehlen P., Kretz-Remy C., Préville X., Arrigo A.P. Human hsp27, Drosophila hsp27 and human alpha B-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNF alpha-induced cell death. EMBO J. 1996; 15 (11): 2695-2706. |
| [23] |
Mehlen P., Mehlen A., Godet J., Arrigo A.P. Hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J. Biol. Chem. 1997; 272 (50): 31 657-31 665. http://dx.doi.org/10.1074/jbc.272.50.31657 |
| [24] |
Mehlen P., Preville X., Chareyron P. et al. Constitutive expression of human hsp27, Drosophila hsp27, or human alpha B-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J. Immunol. 1995; 154 (1): 363-374. |
| [25] |
Mehlen P., Schulze-Osthoff K., Arrigo A.P. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J. Biol. Chem. 1996; 271 (28): 16 510-16 514. http://www.jbc.org/content/271/28/16510 |
| [26] |
Miron T., Vancompernolle K., Vandekerckhove J. et al. A 25 kD inhibitor of actin polymerization is a low molecular mass heat shock protein. J. Cell. Biol. 1991; 114 (2): 255-261. http://dx.doi.org/10.1083/jcb.114.2.255 |
| [27] |
Njemini R., Lambert M., Demanet C.H., Mets T. Heat shock protein 32 in human peripheral blood mononuclear cells: effect of aging and inflammation. J. Clin. Immunol. 2005; 25 (5): 405-417. http://dx.doi.org/10.1007/s10875-005-5361-y |
| [28] |
Plater M.L., Goode D., Crabbe M.J. Effects of site-directed mutations on the chaperone-like activity of alpha B-crystallin. J. Biol. Chem. 1996; 271 (45): 28 558-28 566. http://www.jbc.org/content/271/45/28558 |
| [29] |
Pollack M., Phaneuf S., Dirks A., Leeuwenburgh C. The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann. NY Acad. Sci. 2002; 959: 93-107. http://dx.doi.org/10.1111/j.1749-6632.2002.tb02086.x |
| [30] |
Préville X., Salvemini F., Giraud S. et al. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery. Exp. Cell. Res. 1999; 247 (1): 61-78. http://dx.doi.org/10.1006/excr.1998.4347 |
| [31] |
Rao P.V., Horwitz J., Zigler J.S.Jr. Chaperone-like activity of alpha-crystallin. The effect of NADPH on its interaction with zeta-crystallin. J. Biol. Chem. 1994; 269 (18): 13 266-13 272. http://www.jbc.org/content/269/18/13266 |
| [32] |
Rasaputra K.S., Liyanage R., Lay J.O.Jr. et al. Effect of thiram on avian growth plate chondrocytes in culture. J. Toxicol. Sci. 2013; 38 (1): 93-101. http://dx.doi.org/10.2131/jts.38.93 |
| [33] |
Sugden P.H., Clerk A. «Stress-responsive» mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ. Res. 1998; 83 (4): 345-352. http://dx.doi.org/10.1161/01.RES.83.4.345 |
| [34] |
Sugiyama Y., Suzuki A., Kishikawa M. et al. Muscle develops a specific form of small heat shock protein complex composed of MΚBP/HSPB2 and HSPB3 during myogenic differentiation. J. Biol. Chem. 2000; 275 (2): 1095-1104. http://dx.doi.org/10.1074/jbc.275.2.1095 |
| [35] |
Suzuki T., Segami N., Nishimura M. et al. Analysis of 70 kD heat shock protein expression in patients with internal derangement of the temporomandibular joint. Int. J. Oral. Maxillofac. Surg. 2000; 29 (4): 301-304. http://dx.doi.org/10.1016/S0901-5027(00)80033-8 |
| [36] |
Terzuoli E., Meini S., Cucchi P. et al. Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-κb pathway activation. PLoS One. 2014; 9 (1): e84358. http://dx.doi.org/10.1371/journal.pone.0084358 |
| [37] |
Tiffee J.C., Griffin J.P., Cooper L.F. Immunolocalization of stress proteins and extracellular matrix proteins in the rat tibia. Tissue. Cell. 2000; 32 (2): 141-147. http://dx.doi.org/10.1054/tice.2000.0097 |
| [38] |
Tissieres A., Mitchell H.K., Tracy U.M. Protein synthesis in salivary glands of drosophila melanogaster. J. Molec. Biol. 1974; 84 (3): 389-398. http://dx.doi.org/10.1016/0022-2836(74)90447-1 |
| [39] |
Vanmuylder N., Evrard L., Dourov N. Strong expression of heat shock proteins in growth plate cartilage, an immunohistochemical study of HSP28, HSP70 and HSP110. Anat. Embryol. (Berl.). 1997; 195 (4): 359-362. http://dx.doi.org/10.1007/s004290050056 |
| [40] |
Yang R.C., Chang C.C., Sheen J.M. et al. Davallia bilabiata inhibits TNF-α-induced adhesion molecules and chemokines by suppressing IKK/NF-kappa B pathway in vascular endothelial cells. Am. J. Chin. Med. 2014; 42 (6): 1411-1429. http://dx.doi.org/10.1142/S0192415X1450089X |
| [41] |
Yang X., Khosravi-Far R., Chang H.Y., Baltimore D. Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell. 1997; 89 (7): 1067-1076. http://dx.doi.org/10.1016/S0092-8674(00)80294-9 |
| [42] |
Yoda M., Sakai T., Mitsuyama H. et al. Geranylgeranylacetone suppresses hydrogen peroxide-induced apoptosis of osteoarthritic chondrocytes. J. Orthop. Sci. 2011; 16 (6): 791-798. http://dx.doi.org/10.1007/s00776-011-0138-z |
Kabalyk M.A., Gel’tser B.I., Osipov A.L., Fadeev M.F.
/
| 〈 |
|
〉 |