Role of P2 receptors in vascular tone regulation

B A Ziganshin , A A Spasov , A P Ziganshina , R K Dzhordzhikiya , A U Ziganshin

Kazan medical journal ›› 2016, Vol. 97 ›› Issue (3) : 414 -421.

PDF
Kazan medical journal ›› 2016, Vol. 97 ›› Issue (3) : 414 -421. DOI: 10.17750/KMJ2016-414
Reviews
review-article

Role of P2 receptors in vascular tone regulation

Author information +
History +
PDF

Abstract

P2 receptors, the main endogenous agonist of which is adenosine triphosphate (ATP), are widely distributed in mammalian tissues and organs, including the cardiovascular system. In human blood vessels, various types of the P2Y (metabotropic, G-protein coupled receptors) and P2X (ligand-gated ion channels) family of receptors are present. Several subtypes of P2X and P2Y receptors have been found on the surface of endothelial cells as well as smooth muscle cells of the vessels. Activation of various subtypes of P2 receptors located in different cells of the blood vessel can have multidirectional action on the tone of the vessel’s wall, thereby causing both vasoconstriction and vasodilatation. To date, two main physiologic mechanisms have been identified, via which Р2 receptors participate in controlling the vascular tone: (1) neuronal - ATP is released as a co-transmitter from perivascular sympathetic nerve terminals and activates P2 receptors located on vascular smooth muscle cells; (2) endothelial - ATP is released into the vessel’s lumen by endothelial cells and blood cells and activates P2 receptors located on the endothelial cells. In the first mechanism, simultaneous release of ATP and norepinephrine from sympathetic nerve terminals results in vasoconstriction caused by rapid depolarization, which is completely inhibited by P2X receptor antagonists, and slow depolarization, which is inhibited by alpha-adrenergic blockers. In the second mechanism, during shear stress and hypoxic conditions, ATP activates P2 receptors of endothelial cells causing vasodilatation. These differing effects, mediated via P2 receptors, make it very tempting to develop novel drugs that would regulate vascular tone via these receptors.

Keywords

P2 receptors / ATP / vascular tone / human blood vessels

Cite this article

Download citation ▾
B A Ziganshin, A A Spasov, A P Ziganshina, R K Dzhordzhikiya, A U Ziganshin. Role of P2 receptors in vascular tone regulation. Kazan medical journal, 2016, 97(3): 414-421 DOI:10.17750/KMJ2016-414

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Зиганшин А.У., Зиганшин Б.А., Гиниятова Л.Р., Джорджикия Р.К. Влияние PPADS на Р2Х-рецептор-опосредованные ответы кровеносных сосудов человека. Бюлл. эксперим. биол. и мед. 2004; 137 (3): 321-324.

[2]

Зиганшин А.У., Зиганшина Л.Е. P2-рецепторы: перспективная мишень для будущих лекарств. М.: ГЭОТАР-Медиа. 2009; 136 с.

[3]

Зиганшин А.У., Хазиахметов Д.Ф., Зиганшина Л.Е. и др. Сократительная активность большой подкожной вены бедра человека, опосредованная Р2-рецепторами. Бюлл. эксперим. биол. и мед. 2003; 135 (1): 29-32.

[4]

Зиганшин Б.А., Славин Д.А., Хазиахметов Д.Ф. и др. Исследование наличия и локализации Р2-рецепторов в кровеносных сосудах человека. Казанский мед. ж. 2015; 96 (3): 368-376.

[5]

Ahmad S., Storey R.F. Development and clinical use of prasugrel and ticagrelor. Curr. Pharm. Des. 2012; 18: 5240-5260. http://dx.doi.org/10.2174/138161212803251989

[6]

Alexander S.P., Davenport A.P., Kelly E. et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br. J. Pharmacol. 2015; 172: 5744-5869. http://dx.doi.org/10.1111/bph.13348

[7]

Alexander S.P., Peters J.A., Kelly E. et al. The Concise Guide to PHARMACOLOGY 2015/16: Ligand-gated ion channels. Br. J. Pharmacol. 2015; 172: 5870-5903. http://dx.doi.org/10.1111/bph.13350

[8]

Angiolillo D.J., Ferreiro J.L. Platelet adenosine diphosphate P2Y12 receptor antagonism: benefits and limitations of current treatment strategies and future directions. Rev. Esp. Cardiol. 2010; 63: 60-76. http://dx.doi.org/10.1016/S0300-8932(10)70010-5

[9]

Bender A., Zapolanski T., Watkins S. et al. Tetracycline suppresses ATP gamma S-induced CXCL8 and CXCL1 production by the human dermal microvascular endothelial cell-1 (HMEC-1) cell line and primary human dermal microvascular endothelial cells. Exp. Dermatol. 2008; 17: 752-760. http://dx.doi.org/10.1111/j.1600-0625.2008.00716.x

[10]

Boarder M.R., Hourani S.M. The regulation of vascular function by P2 receptors: multiple sites and multiple receptors Trends Pharmacol. Sci. 1998; 19: 99-107. http://dx.doi.org/10.1016/S0165-6147(98)01170-5

[11]

Bohmann C., von Kugelgen I., Rump L.C. P2-receptor modulation of noradrenergic neurotransmission in rat kidney. Br. J. Pharmacol. 1997; 121: 1255-1262. http://dx.doi.org/10.1038/sj.bjp.0701259

[12]

Burnstock G. Purinergic nerves. Pharmacol. Rev. 1972; 24: 509-581. http://dx.doi.org/10.1016/0306-4522(76)90054-3

[13]

Burnstock G. Do some nerve cells release more than one transmitter? Neuroscience. 1976; 1: 239-248. http://dx.doi.org/10.1016/0197-0186(90)90158-P

[14]

Burnstock G. Noradrenaline and ATP as cotransmitters in sympathetic nerves. Neurochem. Int. 1990; 17: 357-368. http://dx.doi.org/10.1016/0197-0186(90)90158-P

[15]

Burnstock G. Purinergic regulation of vascular tone and remodelling. Auton Autacoid Pharmacol. 2009; 29: 63-72. http://dx.doi.org/10.1111/j.1474-8673.2009.00435.x

[16]

Burnstock G. Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future. Bioessays. 2012; 34: 218-225. http://dx.doi.org/10.1002/bies.201100130

[17]

Burnstock G., Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol. Rev. 2014; 66: 102-192. http://dx.doi.org/10.1124/pr.113.008029

[18]

Burnstock G., Verkhratsky A. Evolutionary origins of the purinergic signalling system. Acta Physiol. (Oxf.). 2009; 195: 415-447. http://dx.doi.org/10.1111/j.1748-1716.2009.01957.x

[19]

Conley P.B., Delaney S.M. Scientific and therapeutic insights into the role of the platelet P2Y12 receptor in thrombosis. Curr. Opin. Hematol. 2003; 10: 333-338. http://dx.doi.org/10.1097/00062752-200309000-00002

[20]

Dinh Xuan A.T., Higenbottam T.W., Clelland C. et al. Acetylcholine and adenosine diphosphate cause endothelium-dependent relaxation of isolated human pulmonary arteries. Eur. Respir. J. 1990; 3: 633-638.

[21]

Fukui D., Yang X.P., Chiba S. Neurogenic double-peaked vasoconstriction of human gastroepiploic artery is mediated by both alpha1- and alpha2-adrenoceptors. Br. J. Pharmacol. 2005; 144: 737-742. http://dx.doi.org/10.1038/sj.bjp.0705975

[22]

Gitterman D.P., Evans R.J. Nerve evoked P2X receptor contractions of rat mesenteric arteries; dependence on vessel size and lack of role of L-type calcium channels and calcium induced calcium release. Br. J. Pharmacol. 2001; 132: 1201-1208. http://dx.doi.org/10.1038/sj.bjp.0703925

[23]

Harrington L.S., Mitchell J.A. Novel role for P2X receptor activation in endothelium-dependent vasodilation. Br. J. Pharmacol. 2004; 143: 611-617. http://dx.doi.org/10.1038/sj.bjp.0706004

[24]

Illes P., Jackisch R., Regenold J.T. Presynaptic P1-purinoceptors in jejunal branches of the rabbit mesenteric artery and their possible function. J. Physiol. 1988; 397: 13-29. http://dx.doi.org/10.1113/jphysiol.1988.sp016985

[25]

Jackson E.K., Cheng D., Mi Z. et al. Role of A1 receptors in renal sympathetic neurotransmission in the mouse kidney. Am. J. Physiol. Renal. Physiol. 2012; 303: F1000-5. http://dx.doi.org/10.1152/ajprenal.00363.2012

[26]

Jaime-Figueroa S., Greenhouse R., Padilla F. et al. Discovery and synthesis of a novel and selective drug-like P2X(1) antagonist. Bioorg. Med. Chem. Lett. 2005; 15: 3292-3295. http://dx.doi.org/10.1016/j.bmcl.2005.04.049

[27]

Kassack M.U., Braun K., Ganso M. et al. Structure-activity relationships of analogues of NF449 confirm NF449 as the most potent and selective known P2X1 receptor antagonist. Eur. J. Med. Chem. 2004; 39: 345-357. http://dx.doi.org/10.1016/j.ejmech.2004.01.007

[28]

Kato M., Shiode N., Teragawa H. et al. Adenosine 5’-triphosphate induced dilation of human coronary microvessels in vivo. Intern. Med. 1999; 38: 324-329. http://dx.doi.org/10.2169/internalmedicine.38.324

[29]

Kelm M., Feelisch M., Deussen A. et al. Release of endothelium derived nitric oxide in relation to pressure and flow. Cardiovasc. Res. 1991; 25: 831-836. http://dx.doi.org/10.1093/cvr/25.10.831

[30]

Kennedy C. ATP as a cotransmitter in the autonomic nervous system. Auton. Neurosci. 2015; 191: 2-15. http://dx.doi.org/10.1016/j.autneu.2015.04.004

[31]

Lewis C.J., Evans R.J. P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations. J. Vasc. Res. 2001; 38: 332-340. http://dx.doi.org/10.1159/000051064

[32]

Loesch A., Dashwood M.R. On the sympathetic innervation of the human greater saphenous vein: relevance to clinical practice. Curr. Vasc. Pharmacol. 2009; 7: 58-67. http://dx.doi.org/10.2174/157016109787354150

[33]

Malmsjo M., Hou M., Harden T.K. et al. Characterization of contractile P2 receptors in human coronary arteries by use of the stable pyrimidines uridine 5’-O-thiodiphosphate and uridine 5’-O-3-thiotriphosphate. J. Pharmacol. Exp. Ther. 2000; 293: 755-760.

[34]

Martin G.N., Thom S.A., Sever P.S. The effects of adenosine triphosphate (ATP) and related purines on human isolated subcutaneous and omental resistance arteries. Br. J. Pharmacol. 1991; 102: 645-650. http://dx.doi.org/10.1111/j.1476-5381.1991.tb12227.x

[35]

Metcalfe M.J., Baker D.M., Burnstock G. Purinoceptor expression on keratinocytes reflects their function on the epidermis during chronic venous insufficiency. Arch. Dermatol. Res. 2006; 298: 301-307. http://dx.doi.org/10.1007/s00403-006-0693-x

[36]

Metcalfe M.J., Baker D.M., Turmaine M. et al. Alterations in purinoceptor expression in human long saphenous vein during varicose disease. Eur. J. Vasc. Endovasc. Surg. 2007; 33: 239-250. http://dx.doi.org/10.1016/j.ejvs.2006.09.007

[37]

Motte S., Communi D., Pirotton S. et al. Involvement of multiple receptors in the actions of extracellular ATP: the example of vascular endothelial cells. Int. J. Biochem. Cell. Biol. 1995; 27: 1-7. http://dx.doi.org/10.1016/1357-2725(94)00059-X

[38]

Nalos M., Asfar P., Ichai C. et al. Adenosine triphosphate-magnesium chloride: relevance for intensive care. Intensive Care Med. 2003; 29: 10-18. http://dx.doi.org/10.1007/s00134-002-1550-9

[39]

Parati G., Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur. Heart J. 2012; 33: 1058-1066. http://dx.doi.org/10.1093/eurheartj/ehs041

[40]

Ralevic V. Purines as neurotransmitters and neuromodulators in blood vessels. Curr. Vasc. Pharmacol. 2009; 7: 3-14. http://dx.doi.org/10.2174/157016109787354123

[41]

Ralevic V. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease. Curr. Med. Chem. 2015; 22: 851-865. http://dx.doi.org/10.2174/0929867321666141215094050

[42]

Ralevic V., Burnstock G. Receptors for purines and pyrimidines. Pharmacol. Rev. 1998; 50: 413-492.

[43]

Ralevic V., Dunn W.R. Purinergic transmission in blood vessels. Auton. Neurosci. 2015; 191: 48-66. http://dx.doi.org/10.1016/j.autneu.2015.04.007

[44]

Rump L.C., Bohmann C., Schwertfeger E. et al. Extracellular ATP in the human kidney: mode of release and vascular effects. J. Auton. Pharmacol. 1996; 16: 371-375. http://dx.doi.org/10.1111/j.1474-8673.1996.tb00056.x

[45]

Saetrum Opgaard O., Edvinsson L. Mechanical properties and effects of sympathetic co-transmitters on human coronary arteries and veins. Basic Res. Cardiol. 1997; 92: 168-180. http://dx.doi.org/10.1007/BF00788634

[46]

Saiag B., Bodin P., Shacoori V. et al. Uptake and Flow-induced Release of Uridine Nucleotides from Isolated Vascular Endothelial Cells. Endothelium. 1995; 2: 279-285. http://dx.doi.org/10.3109/10623329509024644

[47]

Sarafoff N., Byrne R.A., Sibbing D. Clinical use of clopidogrel. Curr. Pharm. Des. 2012; 18: 5224-5239. http://dx.doi.org/10.2174/138161212803251853

[48]

Sneddon P., Burnstock G. ATP as a co-transmitter in rat tail artery. Eur. J. Pharmacol. 1984; 106: 149-152. http://dx.doi.org/10.1016/0014-2999(84)90688-5

[49]

Soto F., Lambrecht G., Nickel P. et al. Antagonistic properties of the suramin analogue NF023 at heterologously expressed P2X receptors. Neuropharmacology. 1999; 38: 141-149. http://dx.doi.org/10.1016/S0028-3908(98)00158-0

[50]

Stephens N., Bund S.J., Faragher E.B. et al. Neurotransmission in human resistance arteries: contribution of alpha1- and alpha2-adrenoceptors but not P2-purinoceptors. J. Vasc. Res. 1992; 29: 347-352. http://dx.doi.org/10.1159/000158950

[51]

Stokes L., Scurrah K., Ellis J.A. et al. A loss-of-function polymorphism in the human P2X4 receptor is associated with increased pulse pressure. Hypertension. 2011; 58: 1086-1092. http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.176180

[52]

Storey R.F. The P2Y12 receptor as a therapeutic target in cardiovascular disease. Platelets. 2001; 12: 197-209. http://dx.doi.org/10.1080/09537100120058739

[53]

Strata P., Harvey R. Dale’s principle. Brain Res. Bull. 1999; 50: 349-350. http://dx.doi.org/10.1016/S0361-9230(99)00100-8

[54]

Su C., Bevan J.A., Burnstock G. [3H]adenosine triphosphate: release during stimulation of enteric nerves. Science. 1971; 173: 336-338. http://dx.doi.org/10.1126/science.173.3994.336

[55]

Tabrizchi R., Bedi S. Pharmacology of adenosine receptors in the vasculature. Pharmacol. Ther. 2001; 91: 133-147. http://dx.doi.org/10.1016/S0163-7258(01)00152-8

[56]

Von Kugelgen I., Krumme B., Schaible U. et al. Vasoconstrictor responses to the P2x-purinoceptor agonist beta, gamma-methylene-L-ATP in human cutaneous and renal blood vessels. Br. J. Pharmacol. 1995; 116: 1932-1936. http://dx.doi.org/10.1111/j.1476-5381.1995.tb16685.x

[57]

Yamamoto K., Sokabe T., Matsumoto T. et al. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat. Med. 2006; 12: 133-137. http://dx.doi.org/10.1038/nm1338

[58]

Yamamoto K., Sokabe T., Ohura N. et al. Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2003; 285: H793-803. http://dx.doi.org/10.1152/ajpheart.01155.2002

[59]

Ziganshin A.U., Khaziakhmetov D.F., Ziganshina L.E. et al. Varicose disease affects the P2 receptor-mediated responses of human greater saphenous vein. Vascul. Pharmacol. 2004; 42: 17-21. http://dx.doi.org/10.1016/j.vph.2004.11.007

[60]

Zunkler B.J., Grafe M., Henning B. et al. Effects of P2 purinoceptor agonists on membrane potential and intracellular Ca2+ of human cardiac endothelial cells. Pharmacol. Toxicol. 1999; 85: 7-15. http://dx.doi.org/10.1111/j.1600-0773.1999.tb01056.x

RIGHTS & PERMISSIONS

Ziganshin B.A., Spasov A.A., Ziganshina A.P., Dzhordzhikiya R.K., Ziganshin A.U.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/