Development and verification of material models in modeling of wave strain hardening and additive synthesis (3DMP) processes
Andrey V. Kirichek , Sergey V. Barinov , Alexander V. Yashin , Svetlana O. Fedonina , Kirill Y. Androsov
Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (5) : 611 -618.
Development and verification of material models in modeling of wave strain hardening and additive synthesis (3DMP) processes
BACKGROUND: The creation of competitive machine parts capable of withstanding standard and increased operational loads is a relevant task in mechanical engineering. Developing additive synthesis technologies together with strengthening technologies make it possible to create products with high load-bearing capacity. However, to improve the efficiency of these technologies, it is necessary to create theoretical models of the considered processes. The paper presents the results of the first stage of creating complex theoretical models of the combined 3DMP process and wave strain hardening (WSH) required for designing the technological processes for manufacturing engine parts and brake systems of automotive equipment.
AIM: Creation and adequacy assessment of the models of materials used in finite element modeling of additive synthesis processes with subsequent hardening.
METHODS: Theoretical models of the material were created in the ANSYS software package, which is capable of performing multidisciplinary calculations. The experimental data required for preparing the models were obtained by testing tensile samples manufactured using standardized methods. The hardness of materials was studied using the KB 30S automatic hardness tester. The adequacy of additive synthesis modeling was assessed based on the distribution of temperature fields. The adequacy of models of the material for the WSH process was assessed based on the sizes of individual plastic indentations and the distribution diagrams of the depth and degree of hardening in the surface layer.
RESULTS: Theoretical models of the following materials were created: steel 45, stainless steel 12Cr18Ni10Ti, bronze alloy CuAl8Fe3, titanium alloy VT 1-0, aluminum alloy V95. The theoretical data obtained from the modeling results have a high level of significance. The studies were conducted for various thermal (in the range from +20ºС to +800ºС) and deformation modes. Graphical results of theoretical and experimental studies make it possible to obtain a qualitative assessment of the studied processes with the required accuracy.
CONCLUSION: As a result of the adequacy assessment of the created models, it was found that the discrepancy between the empirical and theoretical data does not exceed 7.4%. The obtained models of materials are statistically significant and can be correctly applied in further studies.
additive synthesis / strengthening / deformation wave / automotive parts / finite element modeling / adequacy assessment of modeling
| [1] |
Treutler K, Gehling T, Scheck M, et al. Properties oriented WAAM — microstructural and geometrical control in WAAM of low-alloy steel. Welding in the World. 2024;68(2):247–257. doi: 10.1007/s40194-023-01666-5 |
| [2] |
Treutler K., Gehling T., Scheck M., et al. Properties oriented WAAM – microstructural and geometrical control in WAAM of low-alloy steel // Welding in the World. 2024. Vol. 68, N. 2. P. 247–257. doi: 10.1007/s40194-023-01666-5 |
| [3] |
Kirichek AV, Solovyev DL, Lazutkin AG. Technology and equipment for static-pulse processing of surface-plastic deformation. Moscow: Mashinostroenie; 2004. (In Russ.) |
| [4] |
Киричек А.В., Соловьев Д.Л., Лазуткин А.Г. Технология и оборудование статико-импульсной обработки поверхностным пластическим деформированием. М.: Машиностроение, 2004. |
| [5] |
Aslanyan IR, Barinov SV, Bezyazychnyy VF. Handbook of Surface Plastic Deformation Processes. Irkutsk: Irkutskiy NITU; 2022 (In Russ.) EDN: HVWXZM |
| [6] |
Асланян И.Р., Баринов С.В., Безъязычный В.Ф., и др. Справочник по процессам поверхностного пластического деформирования. Иркутск: Иркутский НИТУ, 2022. EDN: HVWXZM |
| [7] |
Kirichek A, Fedonin O, Khandozhko A, et al. Hybrid technologies and equipment for additive synthesis of products. Science-intensive technologies in mechanical engineering. 2022;(8(134):31–38 (In Russ.) doi: 10.30987/2223-4608-2022-8-31-38 EDN: PHNJGX |
| [8] |
Киричек А.В., Федонин О.Н., Хандожко А.В., и др. Гибридные технологии и оборудование аддитивного синтеза изделий // Наукоёмкие технологии в машиностроении. 2022. № 8(134). С. 31–38. doi: 10.30987/2223-4608-2022-8-31-38 EDN: PHNJGX |
| [9] |
Kumar V, Singh A, Bishwakarma H, Mandal A. Simulation of metallic Wire-arc additive manufacturing (WAAM) process using SIMUFACT Welding software. Journal of Manufacturing Engineering. 2023;18(2):80–85. doi: 10.37255/jme.v18i2pp080-085 |
| [10] |
Kumar V., Singh A., Bishwakarma H., Mandal A. Simulation of metallic Wire-arc additive manufacturing (WAAM) process using SIMUFACT Welding software // Journal of Manufacturing Engineering. 2023. Vol. 18, N. 2. P. 80–85. doi: 10.37255/jme.v18i2pp080-085 |
| [11] |
Makaruk AA, Khamaganov AM, Pashkov AA, et al. Study of stress standing during processing of parts of increased rigidity with a striker tool. Bulletin of the Irkutsk State Technical University. 2017;21(4(123)):39–46 (In Russ.) doi: 10.21285/1814-3520-2017-4-39-46 EDN: YLJJFL |
| [12] |
Макарук А.А., Хамаганов А.М., Пашков А.А., и др. Исследование напряженного стояния при обработке деталей повышенной жёсткости бойковым инструментом // Вестник Иркутского государственного технического университета. 2017. Т. 21, № 4(123). С. 39–46. doi: 10.21285/1814-3520-2017-4-39-46 EDN: YLJJFL |
| [13] |
Blumenstein V, Mahalov M, Ostanin O. Simulation and Calculation of Residual Stresses in Mining Machines Components. E3S Web of Conferences. 2018;41. doi: 10.1051/e3sconf/20184103012 |
| [14] |
Blumenstein V., Mahalov M., Ostanin O. Simulation and Calculation of Residual Stresses in Mining Machines Components // E3S Web of Conferences. 2018. N. 41. doi: 10.1051/e3sconf/20184103012 |
| [15] |
Del’ G. Determination of stresses in the plastic region by hardness distribution. Moscow: Mashinostroenie; 1971 (In Russ.) |
| [16] |
Дель Г.Д. Определение напряжений в пластической области по распределению твёрдости. М.: Машиностроение, 1971. |
| [17] |
Markovets MP. Determination of mechanical properties of metals by hardness. Moscow: Mashinostroenie; 1979. (In Russ.) |
| [18] |
Марковец М.П. Определение механических свойств металлов по твёрдости. М.: Машиностроение, 1979. |
| [19] |
Serafinovich LP. Experimental planning: Study guide. Tomsk: Tomsk Interuniversity Center for Distance Education; 2006 (In Russ.) |
| [20] |
Серафинович Л.П. Планирование эксперимента. Томск: Томский межвузовский центр дистанционного образования, 2006. |
Eco-Vector
/
| 〈 |
|
〉 |