The individual tubular low-toxic combustion chamber

Andrey V. Kostyukov , Anton G. Valeev , Alexander A. Dementiev

Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (1) : 13 -22.

PDF (1077KB)
Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (1) :13 -22. DOI: 10.17816/0321-4443-627164
Environmentally friendly technologies and equipment
research-article

The individual tubular low-toxic combustion chamber

Author information +
History +
PDF (1077KB)

Abstract

BACKGROUND: intensive works in improvement and development of microturbine power plants for energy and transport continues worldwide. These works are still relevant due to near-to-zero emissions of microturbines, as well as due to the fact that microturbines efficiency can be increased up to 50% and above, which opens the potential to compete with well-known power plants in the foreseeable future, including in terms of efficiency. Therefore, the work on the study of a low-toxic combustion chamber for a microturbine seems relevant as well.

AIM: Сomputational and experimental study of an individual tubular low-toxic combustion chamber of a 50 kW microturbine with an increase in pressure at the inlet to the chamber.

METHODS: The description of the experimental facility for combustion chamber testing and the results of its experimental study are given. A sufficient convergence of the experimentally obtained parameters of the combustion chamber with the parameters obtained from the simulation modeling of flow and combustion in the combustion chamber was obtained.

RESULTS: In the course of the calculated and full-scale studies, hydraulic losses, nitrogen oxide emissions, and temperature unevenness at the outlet of the combustion chamber with increasing air pressure at its inlet were determined.

CONCLUSIONS: The calculated study showed a significant effect of an increase in air pressure from 3 to 3.5 bar at the entrance to the combustion chamber on its main parameters. Thus, hydraulic losses have more than doubled and nitrogen oxide emissions have increased almost 1.3 times. The conducted experimental study of the combustion chamber generally confirmed the results of mathematical modeling and thereby tested the computational model used. Thus, the discrepancy in the experimentally and computationally obtained values of relative pressure losses in the combustion chamber does not exceed 15%, and in emissions of nitrogen oxides 7%.

Keywords

microturbine / microturbine combustion chamber / low-toxic combustion chamber / tubular individual direct-flow low-toxic combustion chamber

Cite this article

Download citation ▾
Andrey V. Kostyukov, Anton G. Valeev, Alexander A. Dementiev. The individual tubular low-toxic combustion chamber. Tractors and Agricultural Machinery, 2024, 91(1): 13-22 DOI:10.17816/0321-4443-627164

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Teng SY, Máša V. New insights into the potential of the gas microturbine in microgrids and industrial applications. Renewable and Sustainable Energy Reviews. 2020;134. doi: 10.1016/j.rser.2020.110078

[2]

Teng S.Y., Máša V. New insights into the potential of the gas microturbine in microgrids and industrial applications // Renewable and Sustainable Energy Reviews. 2020. Vol. 134. doi: 10.1016/j.rser.2020.110078

[3]

Benini E. Progress in Gas Turbine Performance. University of Padua: InTech Open. 2013:270.

[4]

Benini E. Progress in Gas Turbine Performance. Padua: InTech Open. 2013. doi: 10.5772/27972013

[5]

Matveev S, Abrashkin V, Orlov M, et al. Development of an algorithm for design calculation of a combustion chamber for a microturbine power plant. Bulletin of the Samara State Aerospace University. 2013;3(41):146–155. (In Russ).

[6]

Матвеев С., Абрашкин В., Орлов М. и др.Разработка алгоритма проектировочного расчета камеры сгорания для микротурбинной энергоустановки // Бюллетень Самарского университета. 2013. №3(41). С. 146–155.

[7]

Kostyukov A, Karpukhin K, Nadareishvili G. Design Features when Using an Effective Microturbine as a Range Extending Engine. Science and Technique. 2018;18(6):447–460. doi: 10.21122/2227-1031-2019-18-6-447-460

[8]

Надареишвили Г., Костюков А., Карпухин К. Особенности конструкции при использовании эффективной микротурбины в качестве двигателя c расширенным диапазоном // Наука и техника. 2018. Т. 18, № 6. С. 447–460. doi: 10.21122/2227-1031-2019-18-6-447-460

[9]

Karpukhin K, Terenchenko A, Kolbasov A, et al. The use of microturbines as an energy converter for motor transport. International Journal of Innovative Technology and Exploring Engineering. 2019:8(10):2700-2703. doi: 10.35940/ijitee.J9451.0881019

[10]

Karpukhin K, Terenchenko A, Kolbasov A., Kondrashov V. The use of microturbines as an energy converter for motor transport // International Journal of Innovative Technology and Exploring Engineering. 2019 Vol. 8, N 10. P. 2700–2703. doi: 10.35940/ijitee.J9451.0881019

[11]

Mnogotselevye malogabaritnye gazoturbinnye dvigateli (mikroturbiny) so sverkhvysokoy ste-penyu regeneratsii. Otchet. Etap 1. Moskva 2015. Gosudarstvennyy registratsionnyy nomer № 1027700140192. 2015. (In Russ).

[12]

Многоцелевые малогабаритные газотурбинные двигатели (микротурбины) со сверхвысокой степенью регенерации. Отчет. Этап 1. М.: МАМИ, 2015. Государственный регистрационный номер № 1027700140192. 2015.

[13]

Gornovskii A, Valeev A, Kosach L, et al. Optimization and tuning of a low-toxic combustion chamber using numerical modeling of combustion chamber processes. Izvestiya MGTU MAMI. 2017;3(33):14–20. (In Russ).

[14]

Горновский А.С., Валеев А.Г., Косач Л.А., и др. Оптимизация и доводка малотоксичной камеры сгорания с применением численного моделирования внутрикамерных процессов // Известия МГТУ МАМИ. 2017. № 3(33). C. 14–20.

[15]

Gornovskii A, Valeev A, Kostyukov A. Designing combustion chamber based on RQL concept. Naukograd Scientific and social journal. 2017:2:73–76. (In Russ).

[16]

Горновский А.С., Валеев А.Г., Костюков А.В. Проектирование камеры сгорания на основе концепции RQL // Наукоград журнал. 2017. № 2. С. 73–76.

[17]

Menter F. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 1994.

[18]

Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA Journal. 1994. Vol. 32, No. 8. P. 1598–1605.

[19]

Menter F, Carregal Ferreira J, Esch T, et al. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In: Proceedings of the international gas turbine congress. Tokyo, November 2–7, 2003. Tokio: Nippon Foundation, 2003. [cited: 28.12.2023] Available from: https://nippon.zaidan.info/seikabutsu/2003/00916/pdf/igtc2003tokyo_ts059.pdf

[20]

Menter F., Carregal Ferreira J., Esch T., et al. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In: Proceedings of the international gas turbine congress. Tokyo, November 2–7, 2003. Tokio: Nippon Foundation, 2003. Дата обращения: 28.12.2023. Режим доступа: https://nippon.zaidan.info/seikabutsu/2003/00916/pdf/igtc2003tokyo_ts059.pdf

[21]

Muller CM, Breitbach H, Peters N. Partially premixed turbulent flame propagation in jet flames. In: Symposium (International) on Combustion. 1994;25(1):1099–1106. doi: 10.1016/S0082-0784(06)80747-2

[22]

Muller C.M., Breitbach H., Peters N. Partially premixed turbulent flame propagation in jet flames // Symposium (International) on Combustion. 1994. Vol. 25, N 1. P. 1099–1106. doi: 10.1016/S0082-0784(06)80747-2

[23]

Pitsch H, Chen M, Peters N. Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames. In: 27th Symposium (International) on combustion. The combustion institute. 1998;27(1):1057–1064. doi: 10.1016/S0082-0784(98)80506-7

[24]

Pitsch H., Chen M., Peters N. Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames // Symposium (International) on Combustion. 1998. Vol. 27, N 1. P. 1057–1064. doi: 10.1016/S0082-0784(98)80506-7

[25]

Pitsch H, Peters N. A consistent flamelet formulation for non-premixed combustion considering differ-ential diffusion effects. Combustion and flame. 1998;114:26–40.

[26]

Pitsch H., Peters N. A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects // Combustion and flame. 1998. Vol. 114. P. 26–40.

RIGHTS & PERMISSIONS

Eco-Vector

PDF (1077KB)

170

Accesses

0

Citation

Detail

Sections
Recommended

/