The method for comparing different blade shapes of flat knives of a rotary cultivator
Anatoly B. Kudzaev , Rita V. Kalagova
Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (3) : 317 -330.
The method for comparing different blade shapes of flat knives of a rotary cultivator
BACKGROUND: In the process of tillage, flat knives of rotary cultivators are to carry out the process of cutting soil and weeds with minimal energy consumption and not to become clogged with weeds, which is due to the compliance of the parameters of their blades with operating conditions. However, despite the abundance of works devoted to the study of the working process of flat knives of rotary cultivators, there is not any method of a comparative assessment of the various shapes of their blades.
AIM: Development of the method for comparing different blade shapes of flat knives of rotary cultivators.
METHODS: The research design included studying the following issues: clarifying the conditions for weeds to fall off the curved blade of a flat knife performing a plane-parallel movement; determining the equation of the curve of a knife blade that satisfies the condition of weeds to fall off the blade; development of methods for comparative analysis of the energy intensity of the process of cutting soil with flat knives with blades of various shapes; experimental verification of theoretical conceptions.
The study objects were the processes of interaction of weeds and soil with the blades of flat knives of various shapes. The studies were conducted during 2022 and 2023.
RESULTS: The condition for weeds to fall off the curved blade of a flat knife performing a plane-parallel movement has been clarified (a more informative form of notation), based on which an equation for the rational curve of the blade has been obtained. The comprehensive method has been developed for comparing different shapes of blades of flat knives of rotary cultivators, according to the criteria of compliance with the condition of weeds to fall off the blade and the energy intensity of soil cutting. Examples of the application of the method for the analysis of various shapes of blades of flat knives of rotary cultivators and the development of one of the effective shapes, as well as the results of experimental studies are given.
CONCLUSION: The proposed method helps to give specific practical recommendations on the advisability of using knives of one shape or another in the operating conditions under consideration, taking into account the operating parameters of the machines, as well as to create effective combined blades.
the blade of a rotary cultivator / the shape of the knife blade / the condition for the weeds to fall off the knife blade / a method for comparing different shapes of blades
| [1] |
Rotary Cultivator Market-Industry Analysis and Forecast 2023-3039: by Blade, Power, End-User, and Region. [internet] Accessed: 6.11.2023. Available from: https://www.maximizemarketresearch.com/market-report/global-rotary-cultivator-market/71467/# |
| [2] |
Rotary Cultivator Market-Industry Analysis and Forecast 2023-3039: by Blade, Power, End-User, and Region [internet] Дата обращения: 7.11.2023. Режим доступа: https://www.maximizemarketresearch.com/market-report/global-rotary-cultivator-market/71467/# |
| [3] |
Sexson BS. Land-Pulverizer. Patent US503006A. Patented August 8, 1893. Accessed: 7.11.2023. Available from: https://patents.google.com/patent/US503006A/en |
| [4] |
Sexson B.S. Land-Pulverizer. Patent US503006A. Patented August 8, 1893. Дата обращения: 7.11.2023. Режим доступа: https://patents.google.com/patent/US503006A/en |
| [5] |
Johnson CN, Stephenson WH, Nash JH. Rotor blade for rotary cultivators. Patent US2679200, Patented May 25, 1954. Accessed: 6.11.2023. Available from: https://patents.google.com/patent/US2679200A/en |
| [6] |
Johnson C.N., Stephenson W.H., Nash J.H. Rotor blade for rotary cultivators. Patent US2679200, Patented May 25, 1954. Дата обращения: 7.11.2023. Режим доступа: https://patents.google.com/patent/US2679200A/en |
| [7] |
Sakai J. Theoretical Approach to the Hand Tractor of Rotary Tillage. JARQ. 1974;8(3):153–158. Accessed: 8.11.2023. Available from: https://www.jircas.go.jp/sites/default/files/publication/jarq/08-3-153-158_0.pdf |
| [8] |
Sakai J. Theoretical Approach to the Hand Tractor of Rotary Tillage // JARQ. 1974. Vol. 8. № 3. P. 153–158. Дата обращения: 7.11.2023. Режим доступа: https://www.jircas.go.jp/sites/default/files/publication/jarq/08-3-153-158_0.pdf |
| [9] |
Sakai J. Designing Process and Theories of Rotary Blades for Better Rotary Tillage (Part 1). JARQ. 1978;12(2):86–93. Accessed: 8.11.2023. Available from: https://www.jircas.go.jp/sites/default/files/publication/jarq/12-2-086-093_0.pdf |
| [10] |
Sakai J. Designing Process and Theories of Rotary Blades for Better Rotary Tillage (Part 1) // JARQ. 1978. Vol. 12, N 2. P. 86–93. [дата обращения: 28.02.2023] Доступ по ссылке: https://www.jircas.go.jp/sites/default/files/publication/jarq/12-2-086-093_0.pdf |
| [11] |
Sakai J, Shibata J, Tagushi T. Design Theory of Edg-Curves for Rotary Blades of Tractors. Journal of the Japanese Society of Agricultural Machinery. 1976;38(2):183–190. doi: 10.11357/jsam1937.38.183 |
| [12] |
Sakai J., Shibata J., Tagushi T. Design Theory of Edg-Curves for Rotary Blades of Tractors // Journal of the Japanese Society of Agricultural Machinery. 1976. Vol. 38, N 2. P. 183–190. doi: 10.11357/jsam1937.38.183 |
| [13] |
Ju J-S, Luan J-M, Cheng C-W. Trajectory Angles and Cultivating Dynamics for Tiller Blades. Journal of Agricultural Machinery. 2004;13(1):1–15. doi: 10.30062/JAM.200403.0001 |
| [14] |
Ju J-S, Luan J-M, Cheng C-W. Trajectory Angles and Cultivating Dynamics for Tiller Blades //Journal of Agricultural Machinery. 2004. Vol. 13, N. 1. P. 1–15. doi: 10.30062/JAM.200403.0001 |
| [15] |
Mc Keys E. Soil Cutting and Tillage. New York. Elsevier. 1985. |
| [16] |
Mc Keys E. Soil Cutting and Tillage. NewYork:Elsevier, 1985. |
| [17] |
Karmakar S. Numerical Modeling of Soil Flow and Pressure Distribution on a simple Tillage Tools using Computational Fluid Dynamics. [Internet]. Saskatoon: University of Saskatchewan. 2005. Accessed: 9.11.2023. Available from: https://harvest.usask.ca/bitstream/handle/10388/etd-10282005-081153/PhD_Thesis_KARMAKAR_Subrata.pdf?sequence=1&isAllowed=y |
| [18] |
Karmakar S. Numerical Modeling of Soil Flow and Pressure Distribution on a simple Tillage Tools using Computational Fluid Dynamics. [Internet]. Saskatoon: University of Saskatchewan, 2005. Дата обращения: 7.11.2023. Режим доступа: https://harvest.usask.ca/bitstream/handle/10388/etd-10282005-081153/PhD_Thesis_KARMAKAR_Subrata.pdf?sequence=1&isAllowed=y |
| [19] |
Aluko O.B. Finite element aided brittle fracture force estimation during two-dimensional soil cutting. Int. Agrophysics. 2008;22:5–15 Accessed: 8.11.2023. Available from: http://www.international-agrophysics.org/pdf-106465-37307?filename=Finite%20element%20aided.pdf |
| [20] |
Aluko O.B. Finite element aided brittle fracture force estimation during two-dimensional soil cutting // Int. Agrophysics. 2008. Vol. 22. P. 5–15 Дата обращения: 7.11.2023. Режим доступа: http://www.international-agrophysics.org/pdf-106465-37307?filename=Finite%20element%20aided.pdf |
| [21] |
Hongbo Z, Hongwen L, Shaochun M, et al. The Effect of Various Edge-Curve Types of Plain-Straight Blades for Strip Tillage Seeding on Torque and soil Disturbance using DEM. Soil and Tillage Research. 2020;202:104674. doi: 10.1016/j.still.2020.104674 |
| [22] |
Hongbo Z., Hongwen L., Shaochun M., et al. The Effect of Various Edge-Curve Types of Plain-Straight Blades for Strip Tillage Seeding on Torque and soil Disturbance using DEM // Soil and Tillage Research. 2020. Vol. 202. P.104674. doi: 10.1016/j.still.2020.104674 |
| [23] |
Chertkiattipol S, Nivamapa T. Variations of torque and specific tilling energy for different rotary blades. International Agricultural Engineering Journal. 2010;19(3):1–14. doi: 10.1016/j.still.2020.104674 |
| [24] |
Chertkiattipol S., Nivamapa T. Variations of torque and specific tilling energy for different rotary blades // International Agricultural Engineering Journal. 2010. Vol. 19, No. 3. P. 1–14. doi: 10.1016/j.still.2020.104674 |
| [25] |
Yuan Y, Wang J, Zhang X, Zhao S. Study on Tillage Resistance and Energy Consumption of a Plain strait Rotary Blade for Strip Tillage. Engenharia Agrícola. 2023;43. doi: 10.1590/1809-4430-Eng.Agric.v43n2e20220127/2023 |
| [26] |
Yuan Y., Wang J., Zhang X., Zhao S. Study on Tillage Resistance and Energy Consumption of a Plain strait Rotary Blade for Strip Tillage // Engenharia Agrícola. 2023. Vol. 43. doi: 10.1590/1809-4430-Eng.Agric.v43n2e20220127/2023 |
| [27] |
Goryachkin VP. Theory of straw cutters and silage cutters. Collected works: in 3 vols. Moscow: Kolos; 1968;3:68–113. (In Russ). |
| [28] |
Горячкин В.П. Теория соломорезки и силосорезки. В кн.: Собрание сочинений: в 3-х т. М.: Колос, 1968. Т.3.C. 68-113. |
| [29] |
Goryachkin VP. The theory of hand scissors and the basic principles of their construction. Collected works: in 3 vols. Moscow: Kolos; 1968;3:120–133. (In Russ). |
| [30] |
Горячкин В.П. Теория ручных ножниц и основные принципы их построения. В кн.: Собрание сочинений: в 3-х т. М.: Колос, 1968. Т.3. С. 120–133. |
| [31] |
Reznik NE. Blade cutting theory and basics of cutting tools calculation. Moscow: Mashinostroenie; 1975. (In Russ). |
| [32] |
Резник Н.Е. Теория резания лезвием и основы расчёта режущих аппаратов. М.: Машиностроение, 1975. |
| [33] |
Zybin YuP. Tekhnologiya izdelij iz kozhi. Moskva: Legkaya industriya; 1975. (In Russ). |
| [34] |
Зыбин Ю.П. Технология изделий из кожи. Москва: Лёгкая индустрия, 1975. |
| [35] |
Kravcova EV. Sovershenstvovanie apparata i processsa kvazistaticheskoj rezki plodoovoshchnogo syr’ya na chasti. [dissertation]. Sankt Peterburg; 2017. (In Russ.) Accessed: 8.11.2023. Available from: http://fppo.ifmo.ru/?page1=16&page2=52&page_d=1&page_d2=173240 |
| [36] |
Кравцова Е.В. Совершенствование аппарата и процесса квазистатической резки плодоовощного сырья на части. дисc. … канд. техн. наук. Санкт-Петербург, 2017. EDN: HNKQNV |
| [37] |
Kanarev FM. Rotary tillage machines and implements. Moscow: Mashinostroenie; 1983. (In Russ). |
| [38] |
Канарев Ф.М. Ротационные почвообрабатывающие машины и орудия. М.: Машиностроение, 1983. |
| [39] |
Gadzhiev PI, Slavkin VI, Alekseev AI, et al. Study of the work of a tillage cutter with a serrated blade of knives. Vestnik FGOU VPO MGAU im VP Goryachkina. 2020;1(95):14–18. (In Russ). doi: 10.34677/1728-7936-2020-1-14-18 |
| [40] |
Гаджиев П.И., Славкин В.И., Алексеев А.И., и др. Исследование работы почвообрабатывающей фрезы с зубчатым лезвием ножей // Вестник ФГОУ ВПО МГАУ им. В.П. Горячкина. 2020. № 1 (95). С. 14–18. doi: 10.34677/1728-7936-2020-1-14-18 |
| [41] |
Dranyaev SB, Chatkin MN, Koryavin SM. Modeling the operation of a screw L-shaped knife of a tiller. Tractors and Agricultural Machinery. 2017;84(7):13–19. (In Russ). doi: 10.17816/0321-4443-66315 |
| [42] |
Драняев С.Б., Чаткин М.Н., Корявин С.М. Моделирование работы винтового Г-образного ножа почвообрабатывающей фрезы // Тракторы и сельхозмашины. 2017. Т. 84, № 7. C. 13–19. doi: 10.17816/0321-4443-66315 |
| [43] |
Nikolaev VA. Analysis of the cyclical ground cutting. The Russian Automobile and Highway Industry Journal. 2019;16(6):642–657. (In Russ). doi: 10.26518/2071-7296-2019-6-642-657 |
| [44] |
Николаев В.А. Анализ циклического резания грунта // Вестник СибАДИ. 2019. Т. 16, № 6. С. 642–657. doi: 10.26518/2071-7296-2019-6-642-657 |
| [45] |
Konstantinov YU. Methods of calculating the resistance and the moment of resistance to cutting the soil with a straight blade knife cutter. Tractors and Agricultural Machinery. 2019;86(5):31–39. (In Russ). doi: 10.31992/0321-4443-2019-5-31-39 |
| [46] |
Константинов Ю.В. Методика расчёта сопротивления и момента сопротивления резанию почвы прямым пластинчатым ножом фрезы // Тракторы и сельхозмашины. 2019. Т. 86, № 5. C. 31–39. doi: 10.31992/0321-4443-2019-5-31-39 |
| [47] |
Kudzaev AB. Comparison of different blade shapes of rectilinearly moving soil tillage tools. Tractors and Agricultural Machinery. 2023;90(4):337–349. (In Russ). doi: 10.17816/0321-4443-321315 |
| [48] |
Кудзаев А.Б. Сравнение различных форм лезвия поступательно движущихся почвообрабатывающих рабочих органов // Тракторы и сельхозмашины. 2023. Т. 90, № 4. С. 337–349. doi: 10.17816/0321-4443-321315 |
Eco-Vector
/
| 〈 |
|
〉 |