Microwave device for heat treatment of meat by-products and waste

Evgeny V. Voronov , Galina V. Novikova , Olga V. Mikhailova , Mariana V. Prosviryakova , Sergey A. Suslov

Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (1) : 113 -122.

PDF (1092KB)
Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (1) :113 -122. DOI: 10.17816/0321-4443-622763
Economics, organization and technology of production
research-article

Microwave device for heat treatment of meat by-products and waste

Author information +
History +
PDF (1092KB)

Abstract

BACKGROUND: In the conditions of farms, there is a problem of neutralizing unpleasant odors during heat treatment of secondary meat raw materials to preserve the consumer properties of protein feed at low operating costs.

AIM: Development of the device for heat treatment with disinfection and neutralization of the unpleasant odor of crushed secondary meat raw materials with the integral effect of an ultra−high frequency electromagnetic field, a bactericidal flow of UV rays and ozone in a continuous mode with electromagnetic safety ensured.

METHODS: The raw materials are the stomach chambers of ruminants. The basic idea, principle of operation and design of the device are based on the propagation of microwave oscillations in a resonator with a spiral decelerating system. The microwave device contains a non-ferromagnetic cylinder with a perforated lower base, a coaxially arranged non-ferromagnetic spiral cylinder and an electrically driven fluoroplastic auger with a solid screw surface. The average perimeter of the annular volume, between the cylinder and the spiral cylinder forming the coaxial resonator, and its height are multiples of half-wavelength. Corona brushes are mounted to the annular base of the cylinder, under which electric gas discharge lamps powered by 1 kHz frequency generators are radially located, and a ceramic annular spherical surface is located under the lamps. Magnetrons are mounted along the perimeter of the outer cylinder with a shift of 120 degrees. The crackling is removed using a pneumatic conveyor.

RESULTS: The feature of the coaxial resonator is that the inner core is formed as a spiral decelerating system. Therefore, the intrinsic Q-factor of the resonator is high, about 115000, therefore, the expected thermal efficiency is 0.7–0.75. The factor of dielectric losses of raw materials with a decrease in humidity from 76% to 30% is reduced by five times. Thus, while keeping the electric stress at the level of 1.2–2 kV/cm, the electromagnetic field power dissipated in a unit of the volume of the crackling decreases by five times, from 34 500 to 6800 W/cm3.

CONCLUSIONS: A new design solution with a spiral coaxial resonator, the use of a ceramic reflector, and a number of physical factors made it possible to develop the design of the operation chamber for the heat treatment of ruminant slaughter waste with the neutralization of unpleasant odors with a capacity of 30–35 kg/h and specific energy costs of 0.16–0.19 kWh/kg.

Keywords

electromagnetic field / corona brushes / ozone / ceramic surface / bactericidal flow / screw auger

Cite this article

Download citation ▾
Evgeny V. Voronov, Galina V. Novikova, Olga V. Mikhailova, Mariana V. Prosviryakova, Sergey A. Suslov. Microwave device for heat treatment of meat by-products and waste. Tractors and Agricultural Machinery, 2024, 91(1): 113-122 DOI:10.17816/0321-4443-622763

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kiseleva IS, Rudik FYa, Romanova OV. Resource-saving technologies for processing meat products. Agrarian scientific journal. 2023;5:140–145. EDN: DGKAXV (In Russ). doi: 10.28983/asj.y2023i5pp140-145

[2]

Киселева И.С., Рудик Ф.Я., Романова О.В. Ресурсосберегающие технологии переработки мясной продукции // Аграрный научный журнал. 2023. № 5. С. 140–145. EDN: DGKAXV doi: 10.28983/asj.y2023i5pp140-145

[3]

Balyakina KD, Detinenko SA, Chernegov NYu. Recycling of secondary resources as a method of increasing the efficiency of the agro-industrial complex. Modern Science. 2021;4–1:77–86. EDN: SPIYQA

[4]

Балякина К.Д., Детиненко С.А., Чернегов Н.Ю. Переработка вторичных ресурсов как метод повышения эффективности деятельности предприятия АПК // Modern Science. 2021. № 4–1. С. 77–86. EDN: SPIYQA

[5]

Azarov BM, Aurich H, Dichev S. Technological equipment for food production. Moscow: Agropromizdat; 1988. (In Russ).

[6]

Азаров Б.М., Аурих Х., Дичев С. Технологическое оборудование пищевых производств. М.: Агропромиздат, 1988.

[7]

Patent RUS № 2803127 / 06.09.2023. Byul. № 25. Voronov E.V., Tikhonov A.A. Mikhaylova O.V., et al. SVCh ustanovka s bikonicheskim rezonatorom i paketami tarelok dlya termoobra-botki myasokostnykh konfiskatov. (In Russ). [cited: 27.10.2023] Available from: https://elibrary.ru/download/elibrary_54659424_76234872.PDF EDN: OHWPJY

[8]

4. Патент РФ № 2803127 / 06.09.2023. Бюл. № 25. Воронов Е.В., Тихонов А.А. Михайлова О.В. и др. СВЧ установка с биконическим резонатором и пакетами тарелок для термообработки мясокостных конфискатов. Дата обращения: 27.10.2023. Режим доступа: https://elibrary.ru/download/elibrary_54659424_76234872.PDF EDN: OHWPJY

[9]

Zhdankin GV, Storchevoy VF, Novikova GV, et al. Investigation of the modes of operation of a microwave installation for heat treatment and disinfection of non-food raw materials of animal origin. Russian agricultural science. 2019;6:65–69. (In Russ). doi: 10.31857/S2500-26272019665-69

[10]

Жданкин Г.В., Сторчевой В.Ф., Новикова Г.В. и др. Исследование режимов работы установки СВЧ для термообработки и обеззараживания непищевого сырья животного происхождения // Российская сельскохозяйственная наука. 2019. № 6. С. 65–69. EDN: GTLNAO doi: 10.31857/S2500-26272019665-69

[11]

Zhdankin GV, Belova MV, Mikhailova OV, et al. Radio wave installations for heat treatment of non-food waste of animal origin. Izvestiya Orenburg GAU. 2018;4(72):198–202. (In Russ). doi: 10.37670/2073-0853

[12]

Жданкин Г.В., Белова М.В., Михайлова О.В. и др. Радиоволновые установки для термообработки непищевых отходов животного происхождения // Известия Оренбургского ГАУ. 2018. № 4(72). С. 198−202. EDN: XYKUTJ doi: 10.37670/2073-0853

[13]

Gorbunova N, Petrunina IP. Problems of waste use in the production of products by meat industry enterprises. Meat industry. 2023;9:32–36. (In Russ). doi: 10.37861/2618-8252-2023-09-32-36

[14]

Горбунова Н., Петрунина И.П. Проблемы использования отходов при производстве продукции предприятиями мясной отрасли // Мясная индустрия. 2023. № 9. С. 32–36. EDN: WAGVLY doi: 10.37861/2618-8252-2023-09-32-36

[15]

Voronov EV. Investigation and substantiation of parameters of a microwave installation implementing a resource-saving technology for heat treatment of meat waste. Bulletin of NGIEI. 2023. No. 8 (147). pp. 33-43. (In Russ). doi: 10.24412/2227-9407-2023-8-33-43

[16]

Воронов Е.В. Исследование и обоснование параметров СВЧ-установки, реализующей ресурсосберегающую технологию термообработки мясных отходов // Вестник НГИЭИ. 2023. № 8 (147). С. 33–43. EDN: POTHMG doi: 10.24412/2227-9407-2023-8-33-43

[17]

Astafyeva KA, Ivanova IP. Analysis of the cytotoxic effect of medical gas-discharge devices // Modern technologies in medicine (STM-HtmlView). 2017;9(1):115–123. (In Russ). EDN: YIZWGT doi: 10.17691/stm2017.9.1.15

[18]

Астафьева К.А., Иванова И.П. Анализ цитотоксического действия медицинских газоразрядных устройств // Современные технологии в медицине (СТМ-HtmlView). Т 9, № 1 (2017). С. 115–123. EDN: YIZWGT doi: 10.17691/stm2017.9.1.15

[19]

Strekalov AV, Strekalov YuA. Electromagnetic fields and waves. Moscow: RIOR; INFRA-M; 2014.

[20]

Стрекалов А. В., Стрекалов Ю. А. Электромагнитные поля и волны. М.: РИОР; ИНФРА-М, 2014.

[21]

Kenenbai GS, Chomanov UCh, Omirzhanova BB, et al. Microbiological indicators of beef rumen after ozonation. All about meat. 2023;1:43–45. (In Russ). doi: 10.21323/2071-2499-2022-6-43-45

[22]

Кененбай Г.С., Чоманов У.Ч., Омиржанова Б.Б., Татиева А.Н. Микробиологические показатели говяжьего рубца после озонирования // Все о мясе. 2023. № 1. С. 43–45. EDN: BQQRKJ doi: 10.21323/2071-2499-2022-6-43-45

[23]

Voskoboynik MF, Chernikov AN. Microwave equipment and devices. Moscow: Radiosvyaz; 1982. (In Russ).

[24]

Воскобойник М. Ф., Черников А. Н. Техника и приборы СВЧ. М.: Радиосвязь, 1982.

[25]

Baskakov SI. Electrodynamics and wave propagation. Moscow: Vysshaya shkola; 1992. (In Russ).

[26]

Баскаков С.И. Электродинамика и распространения волн. М.: Высшая школа, 1992.

[27]

Pchelnikov YuN, Sviridov VT. Ultrahigh frequency electronics. Moscow: Radio i svyaz; 1981. (In Russ).

[28]

Пчельников Ю.Н., Свиридов В.Т. Электроника сверхвысоких частот. М.: Радио и связь, 1981.

[29]

Ryabchenko VYu, Nightshade VV. Computer modeling of objects using PP CST Microwave Studio. Modern problems of radio electronics and telecommunications. 2018;1:139. (In Russ).

[30]

Рябченко В.Ю., Паслён В.В. Компьютерное моделирование объектов с помощью ПП CST Microwave Studio // Современные проблемы радиоэлектроники и телекоммуникаций. 2018. № 1. С. 139. EDN: QIKITH

[31]

Fomin DG, Dudarev NV, Darovskikh SN, et al. Investigation of a volumetric flap-slit junction with a U-shaped slit resonator. Ural Radio Engineering Journal. 2020;4(3):277–292. (In Russ). doi: 10.15826/urej.2020.4.3.002

[32]

Фомин Д.Г., Дударев Н.В., Даровских С.Н. и др. Исследование объемного полосково-щелевого перехода с П-образным щелевым резонатором // Ural Radio Engineering Journal. 2020. Т. 4. № 3. С. 277–292. EDN: OYRVAF doi: 10.15826/urej.2020.4.3.002

[33]

Rogov IA, Adamenko VYa, Nekrutman SV, et al. Electrophysical, optical and acoustic characteristics of food products. Moscow: Legkaya i pishchevaya promyshlennost; 1981. (In Russ).

[34]

Рогов И.А., Адаменко В.Я., Некрутман С.В. и др. Электрофизические, оптические и акустические характеристики пищевых продуктов. М.: Легкая и пищевая промышленность, 1981.

[35]

Ginzburg AS. Calculation and design of drying installations for the food industry. Moscow: Agropromizdat; 1985. (In Russ).

[36]

Гинзбург А.С. Расчет и проектирование сушильных установок пищевой промышленности. М.: Агропромиздат, 1985.

RIGHTS & PERMISSIONS

Eco-Vector

PDF (1092KB)

166

Accesses

0

Citation

Detail

Sections
Recommended

/