Computational study of the gas-dynamic approach for noise reduction in the two-stroke engine’s exhaust system

Andrei A. Chernousov , Rustem D. Enikeev , Reshad Е. Dadashov

Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (2) : 181 -190.

PDF (1069KB)
Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (2) : 181 -190. DOI: 10.17816/0321-4443-604622
Theory, designing, testing
research-article

Computational study of the gas-dynamic approach for noise reduction in the two-stroke engine’s exhaust system

Author information +
History +
PDF (1069KB)

Abstract

BACKGROUND: The traditional approach to designing exhaust mufflers relies mainly on energy dissipation. In the gas-dynamic approach, the flow of exhaust gases is equalized by introducing long channels into the muffler to separate impulses and to shift them in time. It is assumed that this ensures noise reduction without generation of significant counterpressure.

AIM: Evaluation of the prospects of the gas-dynamic approach to reducing the noise level of the exhaust system of two-stroke internal combustion engines.

METHODS: The study has a computational and theoretical nature. The study object is the RMZ-551i two-stroke gasoline two-cylinder engine, which exhaust system includes a resonator (ensures gas-dynamic supercharging) and a muffler. The processes in the gas-air circuit of the piston engine were calculated using the 1D model. The noise characteristic was the effective sound pressure at a specified point in the environment, calculated using the 2D model of propagation of disturbances in elastic medium. Initially, the engine parameters and sound pressure level with the stock muffler at full load and close to nominal engine speed were calculated. Then, the structure of the stock muffler was modified by adding a channel between its two chambers. The parameters of the modified muffler were optimized based on the criterion of gas pulsations reduction at the outlet. The noise reduction of the muffler implementing the gas-dynamic approach was evaluated relatively to the stock muffler and expressed in terms of sound pressure levels in dB. The parameters and sound pressure were finally calculated over a wide range of engine speeds.

RESULTS: According to the computational estimation, the optimal implementation of the gas-dynamic approach in the muffler reduces exhaust noise by 7 dB, while engine power decreases by 2.5%. Calculation of the sound pressure level based on the full-load curve showed that at an engine speed of 3000 rpm, the calculated sound pressure exceeds the minimum (99 dB), obtained for the optimally tuned muffler at an engine speed of 5000 rpm, by 8 dB. It is suggested that the gas-dynamic approach with optimization is also applicable for uniform noise reduction over a wide range of engine speeds, with a more complicated design of the exhaust muffler.

CONCLUSION: Theoretical evaluation of the muffler with a tuned channel connecting its two chambers was carried out. The RMZ-551i two-stroke engine with a stock muffler is a basis for comparison. At the optimum point on the full load curve, the exhaust noise was reduced by 7 dB, while the calculated power decrease was insignificant. The authors note the suitability of the methodology for rapid assessments and automated computational optimization of mufflers that utilize wave effects. They also point out the limitations of the models used, which require validation or calibration based on the experimental data. The necessity in the development of applied models of acoustic effects and measuring devices for domestic CAE packages is pointed out as well.

Keywords

two-stroke engines / exhaust noise / mufflers / wave effects / computer modeling / optimization

Cite this article

Download citation ▾
Andrei A. Chernousov, Rustem D. Enikeev, Reshad Е. Dadashov. Computational study of the gas-dynamic approach for noise reduction in the two-stroke engine’s exhaust system. Tractors and Agricultural Machinery, 2024, 91(2): 181-190 DOI:10.17816/0321-4443-604622

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balishanskaya LG, Drozdova LF, Ivanov NI. Technicheskaya akustika transportnykh machin. Saint Petersburg: Polytekhnika, 1992. (In Russ). EDN: TQOGNB

[2]

Балишанская Л.Г., Дроздова Л.Ф., Иванов Н.И. Техническая акустика транспортных машин. Санкт-Петербург: Политехника, 1992. EDN: TQOGNB

[3]

Rudoy BP, Vakhitov YR. Snizhenie gazodinamicheskogo shuma tsiklicheskikh i impulsnykh energoustanovok. Ufa: USATU, 2008. (In Russ).

[4]

Рудой Б.П., Вахитов Ю.Р. Снижение газодинамического шума циклических и импульсных энергоустановок. Уфа: УГАТУ, 2008.

[5]

Vakhitov YR, Zagayko SA. Priblizhennyi metod rascheta shuma vypuska DVS. Izvestiya MGTU “MAMI”. 2010;4(1):11–14. (In Russ). doi: 10.17816/2074-0530-69518

[6]

Вахитов Ю.Р., Загайко С.А. Приближенный метод расчёта шума выпуска ДВС // Известия МГТУ «МАМИ». 2010. Т. 4, № 1. C. 11–14. doi: 10.17816/2074-0530-69518

[7]

Vakhitov YR, Zagayko SA. Priblizhennyi metod rascheta shuma vpuska DVS. Izvestiya MGTU “MAMI”. 2012;6(2):61–64. (In Russ). doi: 10.17816/2074-0530-68429

[8]

Вахитов Ю.Р., Загайко С.А. Приближенный метод расчёта шума впуска ДВС // Известия МГТУ «МАМИ». 2012. Т. 6, № 2. C. 61–64. doi: 10.17816/2074-0530-68429

[9]

Rudoy BP, Vakhitov YR, Enikeev RD. Improving engine performance and noise level using the ALBEA simulation technique. Proc. Inst. Mech. Eng. Part D: J. Autom. Eng. 2004;218(12):1447–1453. doi: 10.1243/0954407042707687

[10]

Rudoy B.P., Vakhitov Y.R., Enikeev R.D. Improving engine performance and noise level using the ALBEA simulation technique // Proc. Inst. Mech. Eng. Part D: J. Autom. Eng. 2004. Vol. 218, No.12. P. 1447–1453. doi: 10.1243/0954407042707687

[11]

Sakurai M. Relation Between Exhaust Pulsating Flow and Radiation Noise: Development of Exhaust Radiation Noise Simulation Technology. SAE Tech. Paper Series. No. 2004-01-0399. 12 p. doi: 10.4271/2004-01-0399

[12]

Sakurai M. Relation Between Exhaust Pulsating Flow and Radiation Noise: Development of Exhaust Radiation Noise Simulation Technology // SAE Tech. Paper Series. № 2004-01-0399. 12 p. doi: 10.4271/2004-01-0399

[13]

Mann A., Kim M., Neuhierl B., Perot F. et al. Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method. SAE Int. J. Passeng. Cars — Mech. Syst. 2015;8(3):1009–1017. doi: 10.4271/2015-01-2314

[14]

Mann A., Kim M., Neuhierl B., Perot F. et al. Exhaust and Muffler Aeroacoustics Predictions using Lattice Boltzmann Method // SAE Int. J. Passeng. Cars — Mech. Syst. 2015. Vol. 8, No.3. P. 1009–1017. doi: 10.4271/2015-01-2314

[15]

GT-POWER: Gamma Technologies [Internet] [accessed: 2023 October 03]. Available from: https://www.gtisoft.com/gt-power/

[16]

GT-POWER Gamma Technologies [Internet] [дата обращения: 03.10.2023]. Режим доступа: https://www.gtisoft.com/gt-power/

[17]

WAVE: Products: Realis Simulation [Internet] [accessed: 2023 October 03]. Available from: https://www.realis-simulation.com/products/wave/

[18]

WAVE | Products | Realis Simulation [Internet]. [дата обращения: 03.10.2023]. Режим доступа: https://www.realis-simulation.com/products/wave/

[19]

Ошибка! Недопустимый объект гиперссылки.AVL iceSUITE [Internet] [accessed: 2023 October 03]. Available from: https://www.avl.com/avl-icesuite/.

[20]

AVL iceSUITE [Internet] [дата обращения: 03.10.2023]. Режим доступа: https://www.avl.com/avl-icesuite/

[21]

Enikeev RD, Chernousov AA. Proektirovanie i realizacija paketa prikladnykh programm dlya analiza i sinteza slozhnykh tekhnicheskikh obyektov. Vestnik UGATU. 2012;16(5):60–68. (In Russ).

[22]

Еникеев Р.Д., Черноусов А.А. Проектирование и реализация пакета прикладных программ для анализа и синтеза сложных технических объектов // Вестник УГАТУ. 2012. Т. 16, № 5. С. 60–68.

[23]

Certificate of state registration of computer program No. 2021666333/ 13.10.2021. Chernousov AA. Programma ALLBEA OPTIM dlya optimizatsii parametrov po geneticheskomu algoritmu. (In Russ). EDN: BODWWN

[24]

Свидетельство о регистрации программы для ЭВМ РФ № 2021666333/ 13.10.2021. Бюл. № 10. Черноусов А.А. Программа ALLBEA OPTIM для оптимизации параметров по генетическому алгоритму. EDN: BODWWN

[25]

Miles RN. Physical Approach to Engineering Acoustics. Springer, 2020.

[26]

Miles R.N. Physical Approach to Engineering Acoustics. Springer, 2020.

[27]

GOST R 52231-2004. Vneshniy shum avtomobiley v ekspluatatsii. Dopustimye urovni i metody izmereniya. Moscow: Standartinform, 2004. (In Russ).

[28]

ГОСТ Р 52231-2004. Внешний шум автомобилей в эксплуатации. Допустимые уровни и методы измерения. М.: Стандартинформ, 2004.

Funding

Government of the Russian FederationПравительство РФ(FEUE-2023-0007)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1069KB)

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/