Principles of adaptive control of roll stability of reconfigurable chassis with planetary-wheeled propulsion system
Roman Yu. Dobretsov , Andrey O. Kaninsky , Dmitrii S. Popov , Igor B. Pryamitsyn
Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (1) : 45 -54.
Principles of adaptive control of roll stability of reconfigurable chassis with planetary-wheeled propulsion system
BACKGROUND: Roll stability control is a relevant issue in transport platforms’ design in general. Well-known methods of roll stability control are used in development of vehicles of various types. However, these methods can not always be applied in design of small unmanned platforms, so development of special solutions is needed.
AIM: Justification of feasibility of application of anti-roll balancing mechanisms in small unmanned vehicles.
METHODS: The study is based on the analysis of technical solutions implemented in the design of platforms with extreme off-road capabilities and space rovers. Well-known methods of fundamentals of vehicle dynamics are the main tools of the study.
RESULTS: The options of roll stability control system for small unmanned platforms are described. The conclusions regarding feasibility of different options of balancing mechanisms for addressing the issue of counteraction of stability losing and overturning are made.
CONCLUSIONS: The discussed principles of roll stability control could be implemented in special small unmanned vehicles with any type of propulsion system. The further research in this field considers building of mathematical models capable of evaluating the required kinematics and power properties of the system of adaptive roll stability control, as well as testing using the mockup of a moving platform.
steering control / transport vehicle / off-road capability / vehicle mobility / roll stability
| [1] |
Ushiroda Y, Sawase K, Takahashi N, et al. Development of Super AYC. Technical review. 2003;15:73–76. |
| [2] |
Ushiroda Y., Sawase K., Takahashi N., et al. Development of Super AYC // Technical review. 2003. № 15. С. 73–76. |
| [3] |
Ghosh J, Tonoli A, Amati N. A torque vectoring strategy for improving the performance of a rear wheel drive electric vehicle. In: 2015 IEEE Vehicle Power and Propulsion Conference. Motnreal: IEEE, 2015. doi: 10.1109/VPPC.2015.7352887 |
| [4] |
Ghosh J., Tonoli A., Amati N. A torque vectoring strategy for improving the performance of a rear wheel drive electric vehicle // In 2015 IEEE Vehicle Power and Propulsion Conference. Montreal: IEEE, 2015. doi: 10.1109/VPPC.2015.7352887 |
| [5] |
Forsyth RW, inventor; Lockheed Corp., assignee. Amphibious star-wheeled vehicle. United States Patent US 3348518 A. 1967 Oct 24. Cited: 09.09.2023. Available from: https://patentimages.storage.googleapis.com/7f/6e/fd/827d0492ed9502/US3348518.pdf |
| [6] |
Forsyth R.W., inventor; Lockheed Corp., assignee. Amphibious star-wheeled vehicle. United States Patent US 3348518 A. 1967 Oct 24. Дата обращения: 09.09.2023. Режим доступа: https://patentimages.storage.googleapis.com/7f/6e/fd/827d0492ed9502/US3348518.pdf |
| [7] |
Mamiti GI, Pliev SKh, Tedeev VB. Calculation of stability of a tricycle with a tilting body. Vestnik mashinostroeniya. 2015;7:30–34. (In Russ). EDN: WFAOPX |
| [8] |
Мамити Г.И., Плиев С.Х., Тедеев В.Б. Расчёт устойчивости трицикла с наклоняющимся кузовом // Вестник машиностроения. 2015. № 7. С. 30–34. EDN: WFAOPX |
| [9] |
Bao L, Dobretsov RYu, Voinash SA, et al. On the possibility of increasing the controllability and stability of movement of a wheeled vehicle by using controlled differentials. Transportnoe, gornoe i stroitelnoe mashinostroenie: nauka i proizvodstvo. 2023;19:84–91. (In Russ). EDN: UYIGMO doi: 10.26160/2658-3305-2023-19-84-91 |
| [10] |
Бао Л., Добрецов Р.Ю., Войнаш С.А. и др. О возможности повышения управляемости и устойчивости движения колёсной машины путём применения управляемых дифференциалов // Транспортное, горное и строительное машиностроение: наука и производство. 2023. № 19. С. 84–91. EDN: UYIGMO doi: 10.26160/2658-3305-2023-19-84-91 |
| [11] |
Dobretsov RYu, Porshnev GP. Car: turning, stability, cross-country ability. Saint Petersburg: Politekhn. un-t; 2011. |
| [12] |
Добрецов Р.Ю., Поршнев Г.П. Автомобиль: поворот, устойчивость, проходимость. Санкт-Петербург: Политехн. ун-т, 2011. |
| [13] |
Pavlov VV, Kuvshinov VV. Theory of motion of multi-purpose tracked and wheeled vehicles: textbook. for universities. Cheboksary: Cheboksarskaya tipografiya №1; 2011. (In Russ). |
| [14] |
Павлов В.В., Кувшинов В.В. Теория движения многоцелевых гусеничных и колёсных машин: учеб. для вузов. Чебоксары: Чебоксарская типография №1, 2011. |
| [15] |
Petrenko AM. Stability of special vehicles: textbook. allowance. Moscow: MADI; 2013. (In Russ). |
| [16] |
Петренко А.М. Устойчивость специальных транспортных средств: учеб. пособие. М.: МАДИ, 2013. |
| [17] |
Chase R, Pandya A. A Review of Active Mechanical Driving Principles of Spherical Robots. Robotics. 2012;1(1):3–23. doi: 10.3390/robotics1010003 |
| [18] |
Chase R., Pandya A. A Review of Active Mechanical Driving Principles of Spherical Robots // Robotics. 2012. Vol. 1, N. 1. P. 3–23. doi: 10.3390/robotics1010003 |
| [19] |
Nosova NA, Galyshev VD, Volkov YuP, et al. Calculation and design of tracked vehicles: a textbook for universities. Leningrad: Mashinostroenie; 1972. (In Russ). |
| [20] |
Носова Н.А., Галышев В.Д., Волков Ю.П. и др. Расчёт и конструирование гусеничных машин: учебник для вузов. Л.: Машиностроение, 1972. |
| [21] |
Litvin FL. Gear theory. Moscow: Nauka; 1968. (In Russ). |
| [22] |
Литвин Ф.Л. Теория зубчатых зацеплений. М.: Наука, 1968. |
| [23] |
Taits BA, Markov NN. Precision and control of gears. Linigrad: Mashinostroenie; 1978. (In Russ). |
| [24] |
Тайц Б.А., Марков Н.Н. Точность и контроль зубчатых передач. Л.: Машиностроение, 1978. |
Eco-Vector
/
| 〈 |
|
〉 |