Study of water heating efficiency in cavitation mode at the initial stage of grain molasses preparation
Vladimir N. Nechaev , Alexey V. Aleshkin , Peter A. Savinykh
Tractors and Agricultural Machinery ›› 2023, Vol. 90 ›› Issue (6) : 575 -583.
Study of water heating efficiency in cavitation mode at the initial stage of grain molasses preparation
BACKGROUND: Grain molasses is a valuable source of digestible protein and feed sugar for farm animals. At the initial stage of production of this feed mixture, the existing devices and water heating schemes are not effective enough. Therefore, a new passive-type device for accelerated heating of water has been developed.
AIM: Evaluation of efficiency of a cavitator for heating water at the grain molasses production plant.
METHODS: In order to conduct studies, a cavitator made in the form of a cone with vanes, the apex angle of which is 16°8ʹ, is installed in a glass pipe of the injection branch of the water circuit of the plant for the preparation of grain molasses. During the experiments, the vanes were installed in the pipe straight or bent by 15°. In laboratory conditions, a comparative experiment was carried out to heat water with a volume of 50 liters, starting from its temperature of 20°C and through each degree to 30°C, both with and without the cavitator. The process efficiency criteria were: time and specific energy consumption of water heating.
RESULTS: As a result of the conducted studies, the values of the efficiency criteria for the water heating process with and without the cavitator are found. Linear dependence of water temperature on heating time is obtained. It has been shown that the created cavitation effect behind the base of the cone is not stable, but still more intense behind the cone with straight petals. It is noted that the coefficient of hydraulic resistance for the cavitator with vanes bent by 15 ° is 10% greater than with straight ones.
CONCLUSIONS: Use of a cavitator when heating water at the initial stage of preparing grain molasses increases efficiency of the process by 20%.
сavitator / cavitation effect / heating time / specific energy consumption
| [1] |
Sysuev VA, Aleshkin AV, Savinyh PA. Feed preparation machines (theory, idea, experiment): [2 Vols.]. Kirov: NIISKH Severo-Vostoka; 2008. T. 1. (In Russ). |
| [2] |
Сысуев В.А., Алешкин А.В., Савиных П.А. Кормоприготовительные машины (теория, разработка, эксперимент): в 2-х Т. Киров: НИИСХ Северо-Востока, 2008. Т. 1. |
| [3] |
Morozov NM, Rasskazov AN. Competitiveness of livestock products – state and directions of increase. Nikonovskie chteniya. 2017;22:59–65. (In Russ). |
| [4] |
Морозов Н.М., Рассказов А.Н. Конкурентность продукции животноводства — состояние и направления повышения // Никоновские чтения. 2017. № 22. С. 59–65. |
| [5] |
Morozov NM. Development of computer technologies and technical means for mechanization and automation of processes in animal breeding. Tekhnika i oborudovanie dlya sela. 2013;8:2–7. (In Russ). |
| [6] |
Морозов Н.М. Развитие машинных технологий и систем технических средств для механизации и автоматизации процессов в животноводстве // Техника и оборудование для села. 2013. № 8. С. 2–7. |
| [7] |
Perevozchikov AV, Vorob’eva SL, Berezkina GYu. Influence of grains in cows rings on qualitative characteristics of raw milk and products of its treatment. Agrar. vestn. Urala. 2019;186(2):51–58. (In Russ). doi: 10.26897/2687-1149-2023-3-41-48 |
| [8] |
Перевозчиков А.В., Воробьева С.Л., Березкина Г.Ю. Влияние зерновой патоки в рационах коров на качественные характеристики сырого молока и продуктов его переработки // Аграрный вестник Урала. 2019. №7(186). С. 51–58. doi: 10.32417/article_5d52af4470c055.81551465 |
| [9] |
Nechaev VN. Optimising the setting parameters of a passive grinder used for rye molasses preparation. Agroinzheneriya. 2023;25(3):41–48. (In Russ). doi.org/10.26897/2687-1149-2023-3-41-48 |
| [10] |
Нечаев В.Н. Оптимизация настроечных параметров пассивного измельчителя при приготовлении ржаной патоки // Агроинженерия. 2023. Т. 25. № 3. С. 41–48. doi: 10.26897/2687-1149-2023-3-41-48 |
| [11] |
Basymbekova A, Kabylbekova BN, Amanbaeva KB. Water rigidity and its influence on the formation of scale deposits in the pipelines of heat supply systems. Nauchnye trudy YUKGU im M Auezova. 2016;3(38):6–8. (In Russ). |
| [12] |
Басымбекова А., Кабылбекова Б.Н., Аманбаева К.Б. Жесткость воды и ее влияние на образование накипных отложений в трубопроводах систем теплоснабжения // Научные труды ЮКГУ им. М. Ауэзова. 2016. № 3 (38). С. 6–8. |
| [13] |
Alekseev V, Arkhipov A, Piskunov D, et al. Water treatment of process systems of steam and hot water boilers: water rigidity and measurement method. TekhNadzor. 2016;1(110):224–225. (In Russ). |
| [14] |
Алексеев В., Архипов А., Пискунов Д., Никитин А., и др. Водоподготовка технологических систем паровых и водогрейных котлов: жесткость воды и методика ее измерения // ТехНадзор. 2016. № 1 (110). С. 224–225. |
| [15] |
Aganin AA, Il’gamov MA, Kosolapova LA, et al. Collapse of a cavitation bubble in fluid near rigid wall. Vestnik Bashkirskogo universiteta. 2013;18(1):15–21. (In Russ). |
| [16] |
Аганин А.А., Ильгамов М.А., Косолапова Л.А., и др. Схлопывание кавитационного пузырька в жидкости вблизи твердой стенки // Вестник Башкирского университета. 2013. Т. 18, № 1. С. 15–21. |
| [17] |
Isakov AYa, Ryabtsev KA. Vortex cavitation in technological devices. Vestnik KamchatGTU. 2003;2:207–214. (In Russ). |
| [18] |
Исаков А.Я., Рябцев К.А. Вихревая кавитация в технологических устройствах // Вестник КамчатГТУ. 2003. № 2. С. 207–214. |
| [19] |
Idel’chik IE. Spravochnik po gidravlicheskim soprotivleniyam. Moscow: Mashinostroenie; 1992. (In Russ). |
| [20] |
Идельчик И. Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1992. |
Eco-Vector
/
| 〈 |
|
〉 |