Method of synthesis of patterns of power distribution between the driving wheels of all-wheel drive agricultural vehicles

Andrey V. Keller , Andrey V. Popov

Tractors and Agricultural Machinery ›› 2023, Vol. 90 ›› Issue (6) : 505 -514.

PDF
Tractors and Agricultural Machinery ›› 2023, Vol. 90 ›› Issue (6) :505 -514. DOI: 10.17816/0321-4443-568209
Theory, designing, testing
research-article

Method of synthesis of patterns of power distribution between the driving wheels of all-wheel drive agricultural vehicles

Author information +
History +
PDF

Abstract

BACKGROUND: All-wheel drive trucks, capable of interacting with various machines and units, performing operations in off-road conditions and on public roads, are needed for the development of agriculture, which plays an important role in the country’s economy. The experience of their operation at agricultural enterprises shows that current power distribution systems in drivetrains does not consider the full range of factors affecting the motion of vehicles, which decreases the efficiency of their use.

AIM: Development of the method of synthesis of patterns of power distribution between the driving wheels of all-wheel drive agricultural trucks.

METHODS: Based on methods of system analysis, multiobjective optimization, regression and correlation analyses, the step-by-step method of synthesis of basic patterns of power distribution between the driving wheels of an all-wheel drive car and their adaptation to real driving conditions is proposed. Fundamentals of the study are basic patterns of power distribution, adopted to operation conditions of a all-wheel drive truck.

RESULTS: The method of synthesis of power distribution patterns is considered step-by-step, based on multiobjective optimization. The design and operational factors that set the parameters of traffic on roads of all types and terrain have been established. The basic patterns of power distribution that ensure the efficiency, reliability and safety of a vehicle are revealed. Depending on the functions, all-wheel drive trucks are conditionally divided into 4 groups with their own indicators and performance criteria. Based on the conducted study, 4 optimization problems are formulated.

CONCLUSIONS: The authors have developed the method for determining the patterns of power distribution between the driving wheels of all-wheel drive trucks and their adaptation to traffic conditions. The main stages of the method are: formulation of the optimization problem; computational procedure and determination of basic patterns of power distribution; adaptation of the basic patterns and evaluation of effectiveness of solutions. It is found that it is sufficient to use the differential equations of straight-line motion when simulating the motion of all-wheel drive trucks along the route.

Keywords

motor transport / trucks / all-wheel drive vehicles / agricultural vehicles / driving wheels of all-wheel drive vehicles / drivetrain of all-wheel drive vehicles / power distribution systems of all-wheel drive vehicles / controlled power distribution in drivetrain

Cite this article

Download citation ▾
Andrey V. Keller, Andrey V. Popov. Method of synthesis of patterns of power distribution between the driving wheels of all-wheel drive agricultural vehicles. Tractors and Agricultural Machinery, 2023, 90(6): 505-514 DOI:10.17816/0321-4443-568209

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agriculture in Russia. 2021: Statistical collection. Moscow: Rosstat; 2021. (In Russ.)

[2]

Сельское хозяйство в России. 2021: Статистический сборник. M.: Росстат, 2021.

[3]

Agro-industrial complex of Russia in 2021. Main indicators of the agro-industrial complex of the Russian Federation. Ministry of Agriculture of the Russian Federation. Moscow: Rosinformagrotekh; 2022. (In Russ.)

[4]

Агропромышленный комплекс России в 2021 году. Основные показатели АПК Российской Федерации. Министерство сельского хозяйства Российской Федерации. М.: Росинформагротех, 2022.

[5]

Shkel AS, Zagarin DA, Kozlovskaya MA, et al. A new family of technological add-ons for the agro-industrial complex based on a specialized agricultural vehicle. Tekhnologiya kolesnykh i gusenichnykh mashin. 2015;6(22):12–19. EDN VBCYND (In Russ.)

[6]

Шкель А.С., Загарин Д.А., Козловская М.А. и др. Новое семейство технологических надстроек для АПК на базе специализированного автомобиля сельскохозяйственного назначения // Технология колёсных и гусеничных машин. 2015. № 6(22). С. 12–19. EDN VBCYND

[7]

Izmailov AYu, Dzotsenidze TD, Evtyushenkov NE, et al. Research of the market niche and justification of the functional features of agricultural trucks with a gross weight of up to 6 tons. In: System of technologies and machines for the innovative development of the Russian agro-industrial complex: Collection of scientific reports of the International Scientific and Technical Conference dedicated to the 145th anniversary birthday of the founder of agricultural mechanics V.P. Goryachkina, Moscow, September 17–18, 2013. Volume Part 2. Moscow: VNIIMSKh; 2013:127–133. EDN TTCANB (In Russ.)

[8]

Измайлов А.Ю., Дзоценидзе Т.Д., Евтюшенков Н.Е. и др. Исследование рыночной ниши и обоснование функциональных особенностей грузовых автомобилей сельскохозяйственного назначения с полной массой до 6 т // Система технологий и машин для инновационного развития АПК России : Сборник научных докладов Международной научно-технической конференции, посвящённой 145-летию со дня рождения основоположника земледельческой механики В.П. Горячкина, Москва, 17–18 сентября 2013 года. Том Часть 2. — Москва: ВНИИМСХ, 2013. С. 127–133. EDN TTCANB

[9]

Zagarin DA, Kozlovskaya MA, Dzotsenidze TD. Analysis of the need and demand for agricultural machinery in conditions of a structural crisis in the economy. Avtomobilnaya promyshlennost. 2020;9:1–7. EDN ULVGPB (In Russ.)

[10]

Загарин Д.А., Козловская М.А., Дзоценидзе Т.Д. Анализ потребности и спроса на машины сельскохозяйственного назначения в условиях структурного кризиса в экономике // Автомобильная промышленность. 2020. № 9. С. 1–7. EDN ULVGPB

[11]

Godzhaev TZ, Zubina VA, Malakhov IS. The justification of functional properties of agricultural moving power units in the multi-objective scenario. Tractors and Agricultural Machinery. 2022;89(6):411–420. (In Russ.) doi: 10.17816/0321-4443-121325

[12]

Годжаев Т.З., Зубина В.А., Малахов И.С. Обоснование функциональных характеристик сельскохозяйственных мобильных энергосредств в многокритериальной постановке // Тракторы и сельхозмашины. 2022. Т. 89, №6. C. 411–420. doi: 10.17816/0321-4443-121325

[13]

Lachuga YuF, Izmailov AYu, Lobachevsky YaP, et al. Priority directions of scientific and technical development of domestic tractor manufacturing. Selskiy mekhanizator. 2021;2:3–5. EDN AKRSBW (In Russ.)

[14]

Лачуга Ю.Ф., Измайлов А.Ю., Лобачевский Я.П. и др. Приоритетные направления научно-технического развития отечественного тракторостроения // Сельский механизатор. 2021. № 2. С. 3–5. EDN AKRSBW

[15]

Dzotsenidze TD, Kozlovskaya MA, Zagarin DA. The new technical appearance of cars and tractors as a way to overcome crisis phenomena in the domestic mechanical engineering. Avtomobilnaya promyshlennost. 2020;10:13–18. EDN NZCFCB (In Russ.)

[16]

Дзоценидзе Т.Д., Козловская М.А., Загарин Д.А. Новый технический облик автомобилей и тракторов как способ преодоления кризисных явлений в отечественном машиностроении // Автомобильная промышленность. 2020. № 10. С. 13–18. EDN NZCFCB

[17]

Krasnikov GYa, Didmanidze ON, Sirotin PV, et al. Justification of the technical appearance of agricultural machinery and strategic approaches to its design. In: Readings of Academician V. N. Boltinsky: Collection of articles, Moscow, January 25–26, 2023. Moscow: OOO «Sam Poligrafist»; 2023:10–32. EDN OQHKER (In Russ.)

[18]

Красников Г.Я., Дидманидзе О.Н., Сиротин П.В. и др. Обоснование технического облика агротехники и стратегических подходов её проектирования // Чтения академика В.Н. Болтинского : Сборник статей, Москва, 25–26 января 2023 года. Москва: ООО «Сам Полиграфист», 2023. С. 10–32. EDN OQHKER

[19]

Vantsevich VV, Paldan JR, Farley BK. Mobility optimization and control of a 4x4 he-vehicle in curvilinear motion on stochastic terrain. In: Proceedings of the ASME Design Engineering Technical Conference, Charlotte, NC, August 21–24, 2016. Charlotte: ASME; 2016. doi: 10.1115/DETC2016-59207

[20]

Vantsevich V.V., Paldan J.R., Farley B.K. Mobility optimization and control of a 4x4 he-vehicle in curvilinear motion on stochastic terrain // Proceedings of the ASME Design Engineering Technical Conference, Charlotte, NC, 21–24 августа 2016 года. Charlotte: ASME, 2016. doi: 10.1115/DETC2016-59207

[21]

Vantsevich VV, Bortolin G. Axle Drive and Brake-Based Traction Control Interaction. SAE International Journal of Commercial Vehicles. 2011;4(1):49–55. doi: 10.4271/2011-01-2160

[22]

Vantsevich V.V., Bortolin G. Axle Drive and Brake-Based Traction Control Interaction // SAE International Journal of Commercial Vehicles. 2011. Vol. 4, N. 1. P. 49–55. doi: 10.4271/2011-01-2160

[23]

Keller A, Aliukov S, Anchukov V, et al. Investigations of Power Distribution in Transmissions of Heavy Trucks. SAE Technical Papers. 2016. doi: 10.4271/2016-01-1100

[24]

Keller A., Aliukov S., Anchukov V., et al. Investigations of Power Distribution in Transmissions of Heavy Trucks // SAE Technical Papers. 2016. doi: 10.4271/2016-01-1100

[25]

Vysotsky MS, Dubovik DA, Kharitonchik SV. Control of inter-axle and inter-wheel drive of heavy-duty vehicles. Vestsi NAN Belarusі. 2005;3:30–35. (In Russ.)

[26]

Высоцкий М.С., Дубовик Д.А., Харитончик С.В. Управление межосевым и межколесным приводом большегрузных автомобилей // Весцi НАН Беларусі. 2005. № 3. С. 30–35.

[27]

Shukhman SB, Solovyov VI, Prochko EI, et al. Theory of power drive of wheels of off-road vehicles. Moscow: Agrobiznestsentr; 2007. EDN QNUPLT (In Russ.)

[28]

Шухман С.Б., Соловьев В.И., Прочко Е.И. и др. Теория силового привода колёс автомобилей высокой проходимости. Москва: Агробизнесцентр, 2007. EDN QNUPLT

[29]

Tarasik VP, Puzanova OV, Kurstak VI. Modeling of differential drivetrain of driving wheels of mobile machines. Vestnik Belorussko-Rossiyskogo universiteta. 2009;3:42–53. (In Russ.)

[30]

Тарасик В.П., Пузанова О.В., Курстак В.И. Моделирование дифференциальных приводов ведущих колёс мобильных машин // Вестник Белорусско-Российского университета. 2009. № 3. С. 42–53.

[31]

Barykin AYu. Fundamentals of the theory of modern differentials. Naberezhnye Chelny: KamPI; 2001. (In Russ.)

[32]

Барыкин, А.Ю. Основы теории современных дифференциалов. Набережные Челны: КамПИ, 2001.

[33]

Krutashov AV. Metody formirovaniya ratsionalnogo raspredeleniya moshchnosti v transmissii legkovogo polnoprivodnogo avtomobilya [dissertation] Moscow; 2009. (In Russ.)

[34]

Круташов А. В. Методы формирования рационального распределения мощности в трансмиссии легкового полноприводного автомобиля. автореферат дисс. … канд. техн. наук. М., 2009.

[35]

Keller A, Aliukov S. Efficient power distribution in an all-wheel drive truck. In: Lecture Notes in Engineering and Computer Science, London, July 01–03, 2015. London: WCE; 2015:1201–1206. EDN XFRNQZ

[36]

Keller A., Aliukov S. Efficient power distribution in an all-wheel drive truck // Lecture Notes in Engineering and Computer Science, London, 01–03 июля 2015 года. London: WCE, 2015. P. 1201–1206. EDN XFRNQZ

[37]

Vysotsky MS, Vantsevich VV, Kabanov VI, et al. Power loading and reliability of differential mechanisms of transport and traction machines. Minsk: Navuka i tekhnika; 1991. (In Russ.)

[38]

Высоцкий М.С., Ванцевич В.В., Кабанов В.И. и др. Энергонагруженность и надёжность дифференциальных механизмов транспортно-тяговых машин. Минск: Навука i тэхника, 1991.

[39]

Tarasik VP. Theory of vehicle motion. Saint Petersburg: BKhV-Peterburg; 2022. EDN FOWIQZ (In Russ.)

[40]

Тарасик В.П. Теория движения автомобиля. Санкт-Петербург: БХВ-Петербург, 2022. EDN FOWIQZ

[41]

Platonov VF. Four-wheel drive vehicles. Moscow: Mashinostroenie; 1989. (In Russ.)

[42]

Платонов В.Ф. Полноприводные автомобили. М.: Машиностроение, 1989.

[43]

Tarasik VP, Rynkevich SA. Intelligent vehicle control systems. Minsk: Tekhnoprint; 2004. EDN TIYBIX (In Russ.)

[44]

Тарасик В.П., Рынкевич С.А. Интеллектуальные системы управления автотранспортными средствами. Минск: Технопринт, 2004. EDN TIYBIX

Funding

Министерства науки и высшего образования РФMinistry of Science and Higher Education of the Russian Federation(FZRR-2023-0007)

RIGHTS & PERMISSIONS

Eco-Vector

PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

/