Conceptual directions for the development of driverless agricultural mobile power units

Ivan A. Starostin , Aleksandr V. Eshchin , Teimur Z. Godzhaev , Svetlana A. Davydova

Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (1) : 23 -38.

PDF (1095KB)
Tractors and Agricultural Machinery ›› 2024, Vol. 91 ›› Issue (1) :23 -38. DOI: 10.17816/0321-4443-567812
New machines and equipment
research-article

Conceptual directions for the development of driverless agricultural mobile power units

Author information +
History +
PDF (1095KB)

Abstract

BACKGROUND: Currently, major global developers and manufacturers in the field of mobile agricultural machinery are working on the development of agricultural robotic systems. Particular attention is paid to the development of universal driverless mobile power units (MPU) capable of performing various technological operations autonomously, without human intervention. In the future, this makes it possible to exclude the operator from the MPU control process and to reconsider approaches to the issue of increasing the efficiency of technological operations. The existing trend of productivity improvement by increasing the main parameters of the unit, such as operating width, operating velocities, load capacity, etc., may change to an alternative path consisting in the use of numerous autonomous small-sized units comparable in performance (a swarm of agricultural robots). Thus, the use of driverless control systems makes it possible to use conceptually new approaches to the development of agricultural MPUs. In this regard, it becomes relevant to conduct the study aimed at identifying promising conceptual directions for the development of driverless MPUs and evaluating the efficiency of their application.

AIM: Identification of conceptual directions for the development of driverless driverless MPUs and a theoretical assessment of the efficiency of their application.

METHODS: The study object was the MPU transformation in the context of the development of driverless control systems. The study was based on scientific publications on the development of robotic agricultural tools, informational data of manufacturers of agricultural tractors and control systems for agricultural machinery. In the course of the study, such methods as information analysis, synthesis, methods of performance analysis of agricultural units and analysis of present cost of performing technological operations, adapted for driverless MPUs by the VIM, were used.

RESULTS: The prospects for the introduction of driverless MPUs, the existing digital and intelligent control systems of MPUs and the main factors hindering their development are analyzed. A classification of agricultural MPUs according to automation levels is proposed. The main directions of development are identified and conceptual models of driverless MPUs are proposed: universal driverless MPUs (driverless tractors) with keeping the existing traction class and power classification, universal (multifunctional) low-power driverless MPUs of the only traction class, separate power modules capable of being combined into a single driverless unit based on the coupled agricultural machine. The method is proposed and the equivalent number of driverless MPUs of each conceptual model for each traction class is calculated. An assessment of the impact of the use of the proposed conceptual models of driverless MPUs on the arable unit performance and the present cost of arable operations has been carried out.

CONCLUSIONS: Conceptual models for the advancing of driverless MPUs have been developed and comparative calculations of the efficiency of their application as part of arable units, helping to assess the possible prospects for their use, have been made.

Keywords

mobile power units / concept / driverless tractor / control system / automation level

Cite this article

Download citation ▾
Ivan A. Starostin, Aleksandr V. Eshchin, Teimur Z. Godzhaev, Svetlana A. Davydova. Conceptual directions for the development of driverless agricultural mobile power units. Tractors and Agricultural Machinery, 2024, 91(1): 23-38 DOI:10.17816/0321-4443-567812

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Starostin IA, Eshchin AV, Davydova SA. Global trends in the development of agricultural robotics. IOP Conf. Series: Earth Env. Sci. 2023;1138:012042. doi: 10.1088/1755-1315/1138/1/012042

[2]

Starostin I.A., Eshchin A.V., Davydova S.A. Global trends in the development of agricultural robotics // IOP Conf. Ser.: Earth Environ. Sci. 2023. Vol. 1138. P. 012042. doi: 10.1088/1755-1315/1138/1/012042

[3]

Lobachevskij JaP, Bejlis VM, Cench JuS. Aspekty cifrovizacii Sistemy tehnologij i mashin // Jelektrotehnologii i jelektrooborudovanie v APK. 2019;3(36):40–45. (In Russ). EDN RLCDHO

[4]

Лобачевский Я.П., Бейлис В.М., Ценч Ю.С. Аспекты цифровизации Системы технологий и машин // Электротехнологии и электрооборудование в АПК. 2019. № 3(36). С. 40–45. EDN RLCDHO

[5]

Aksenov A.G. Analiz intellektual'nyh sistem podderzhki prinjatija reshenij v sel'skom hozjajstve // Jelektrotehnologii i jelektrooborudovanie v APK. 2019;3(36):46–51. (In Russ). EDN CECDAH

[6]

Аксенов А.Г. Анализ интеллектуальных систем поддержки принятия решений в сельском хозяйстве // Электротехнологии и электрооборудование в АПК. 2019. № 3(36). С. 46–51. EDN CECDAH

[7]

Izmailov AYu, Godzhaev ZA, Grishin AP, et al. Digital agriculture (a review of digital technologies for agricultural purposes). Innovations in agriculture. 2019;2(31):41–52. (In Russ). EDN: JNIMAH

[8]

Измайлов А.Ю., Годжаев З.А., Гришин А.П. и др. Цифровое сельское хозяйство (обзор цифровых технологий сельхозназначения) // Инновации в сельском хозяйстве. 2019. № 2 (31). С. 41–52.EDN: JNIMAH

[9]

Lobachevskij JaP, Dorohov AS. Cifrovye tehnologii i robotizirovannye tehnicheskie sredstva dlja sel'skogo hozjajstva. Sel'skohozjajstvennye mashiny i tehnologii. 2021;15(4):6–10. (In Russ). EDN YFRZDV doi: 10.22314/2073-7599-2021-15-4-6-10

[10]

Лобачевский Я.П., Дорохов А.С. Цифровые технологии и роботизированные технические средства для сельского хозяйства // Сельскохозяйственные машины и технологии. 2021. Т. 15, № 4. С. 6–10. EDN YFRZDV doi: 10.22314/2073-7599-2021-15-4-6-10

[11]

Starostin IA, Belyshkina ME, Chilingaryan NO, Alipichev AYu. Digital technologies in agricultural production: implementation background, current state and development trends. Agricultural engineering. 2021;3(103):4–10.

[12]

Starostin I.A., Belyshkina M.E., Chilingaryan N.O., Alipichev A.YU. Digital technologies in agricultural production: implementation background, current state and development trends // Agricultural engineering. No. 3 (103). 2021. Р. 4–10.

[13]

Fedorenko VF, Mishurov NP, Buklagin DS, et al. Digital agriculture: state and development prospects. M.: Rosinformagrotech; 2019. (In Russ) 8. Starovojtov SI, Cench JuS, Korotchenja VM, Lichman GI.

[14]

Федоренко В.Ф., Мишуров Н.П., Буклагин Д.С. и др. Цифровое сельское хозяйство: состояние и перспективы развития. М.: Росинформагротех , 2019

[15]

Tehnicheskie sistemy cifrovogo kontrolja kachestva obrabotki pochvy. Sel'skohozjajstvennye mashiny i tehnologii. 2020;14(1):16–21. (In Russ). doi: 10.22314/2073-7599-2020-14-1-16-21

[16]

Старовойтов С.И., Ценч Ю.С., Коротченя В.М., Личман Г.И. Технические системы цифрового контроля качества обработки почвы // Сельскохозяйственные машины и технологии. 2020. Т. 14, № 1. С. 16–21. EDN HYFQAN doi: 10.22314/2073-7599-2020-14-1-16-21

[17]

Goltyapin VYa. Systems of parallel driving of machine-tractor units.Technique and equipment for the village. 2013;11:12–14. (In Russ). EDN: RKAJJT

[18]

Гольтяпин В.Я. Системы параллельного вождения машинно– тракторных агрегатов // Техника и оборудование для села. 2013. № 11. С. 12–14. EDN: RKAJJT

[19]

Matyuk NS, Zinchenko SI, Mazirov MA, et al. Resource-saving technologies of tillage in adaptive agriculture. Ivanovo: FGBNU Verkhnevolzhskiy FANTs; 2020. (In Russ). EDN: OXDIHN

[20]

Матюк Н.С., Зинченко С.И., Мазиров М.А. и др. Ресурсосберегающие технологии обработки почвы в адаптивном земледелии. Иваново: ФГБНУ Верхневолжский ФАНЦ, 2020. EDN: OXDIHN

[21]

Cognitive Agro Pilot Automatic driving system [internet]. accessed: 14.07.2023. Available from: https://www.tadviser.ru/index.php/

[22]

Cognitive Agro Pilot Система автоматического вождения [internet]. Дата обращения: 14.07.2023. Режим доступа: https://www.tadviser.ru/index.php/

[23]

Sajapin AS, Petrishhev NA, Pestrjakov EV. Sovershenstvovanie upravlenija tehnicheskim sostojaniem mashin za schet ispol'zovanija cifrovyh sredstv monitoringa. Tehnicheskij servis mashin. 2023;61(4(153)):10–17. (In Russ). doi: 10.22314/2618-8287-2023-61-4-10-17

[24]

Саяпин А.С. Петрищев Н.А., Пестряков Е.В. Совершенствование управления техническим состоянием машин за счет использования цифровых средств мониторинга // Технический сервис машин. 2023. Т. 61, № 4(153). С. 10–17. EDN MMBPZL doi: 10.22314/2618-8287-2023-61-4-10-17

[25]

Godzhaev ZA, Lavrov AV, Shevtsov VG, Zubina VA. On the choice of the technological direction of development of the system of agricultural mobile power equipment. Izvestiya MSTU MAMI. 2020;1:35–41. (In Russ). EDN: WVVVVS doi: 10.31992/2074-0530-2020-43-1-35-41

[26]

Годжаев З.А., Лавров А.В., Шевцов В.Г., Зубина В.А. О выборе технологического направления развития системы сельскохозяйственных мобильных энергосредств // Известия МГТУ МАМИ. 2020. № 1. С. 35–41. EDN: WVVVVS doi: 10.31992/2074-0530-2020-43-1-35-41

[27]

Taxonomy And Definitions For Terms Related To Driving Automation Systems For On-Road Motor Vehicles. SAE J 3016. Washington: SAE, 2018.

[28]

Izmailov AYu, Lobachevsky YaP, Dorokhov AS. Modern technologies and equipment for agriculture — trends of the exhibition AGRITECHNIKA 2019. Tractors and agricultural machinery. 2020;6:28– 40. (In Russ). EDN: OPALJD doi: 10.31992/0321-4443-2020-6-28-40

[29]

Измайлов А.Ю., Лобачевский Я.П., Дорохов А.С. Современные технологии и техника для сельского хозяйства — тенденции выставки AGRITECHNIKA 2019 // Тракторы и сельхозмашины. 2020. № 6. С. 28–40. EDN: OPALJD doi: 10.31992/0321-4443-2020-6-28-40

[30]

Kutkov GM. Development of the technical concept of the tractor. Tractors and agricultural machinery. 2019;1:27–35. (In Russ). EDN: ECZSAK doi: 10.31992/0321-4443-2019-1-27-35

[31]

Кутьков Г.М. Развитие технической концепции трактора // Тракторы и сельхозмашины. 2019. № 1. С. 27–35. EDN: ECZSAK doi: 10.31992/0321-4443-2019-1-27-35

[32]

New tracked and wheeled John Deere tractors [internet]. accessed: 14.07.2023. Available from: https://www.deere.ru/ru/tractors/

[33]

Новые гусеничные и колесные тракторы John Deere [internet]. Дата обращения: 14.07.2023. Режим доступа: https://www.deere.ru/ ru/тракторы/, свободный. – (Дата обращения: 12.07.2023).

[34]

Case IH tractors [internet]. accessed: 14.07.2023. Available from: https://www.caseih.com/apac/ru–ru/products/tractors

[35]

Тракторы Case IH [internet]. Дата обращения: 14.07.2023. Режим доступа: https://www.caseih.com/apac/ru–ru/products/tractors

[36]

Latest generation of seed sowing robots: The Fendt Xaver comes of age. Official website of AGCO GmbH. [internet]. accessed: 14.07.2023. Available from: https://www.fendt.com/int/2-fendt-xaver

[37]

Latest generation of seed sowing robots: The Fendt Xaver comes of age. AGCO GmbH. [internet]. Дата обращения: 14.07.2023. Режим доступа: https://www.fendt.com/int/2–fendt–xaver

[38]

Krestovnikov KD, Erashov AA, Vasjunina JuG, Savel'ev AI. Razrabotka ustrojstva soprjazhenija dlja modul'noj sel'skohozjajstvennoj robototehnicheskoj platformy. Sel'skohozjajstvennye mashiny i tehnologii. 2022;16(1):78–88. (In Russ) EDN MNHHSN doi: 10.22314/2073-7599-2022-16-1-78-88

[39]

Крестовников К.Д., Ерашов А.А., Васюнина Ю.Г., Савельев А.И. Разработка устройства сопряжения для модульной сельскохозяйственной робототехнической платформы // Сельскохозяйственные машины и технологии. 2022. Т. 16, № 1. С. 78–88. EDN MNHHSN doi: 10.22314/2073-7599-2022-16-1-78-88

[40]

Grimstad L, From PJ. The Thorvald II agricultural robotic system. Robotics. 2017;6:24.

[41]

Grimstad L., From P.J. The Thorvald II agricultural robotic system // Robotics. 2017. Vol. 6. P. 24.

[42]

Vereshchagin NI, Levshin AG, Skorokhodov AN. Organization and technology of mechanized work in crop production. Moscow: Akademiya; 2013. (In Russ).

[43]

Верещагин Н.И., Левшин А.Г., Скороходов А.Н. Организация и технология механизированных работ в растениеводстве. М.: Академия, 2013.

RIGHTS & PERMISSIONS

Eco-Vector

PDF (1095KB)

52

Accesses

0

Citation

Detail

Sections
Recommended

/