The method of development of the electronic control system for curvilinear motion of a high-speed tracked vehicle with dual-flow transmission
Nikolai V. Buzunov , Vyacheslav V. Ivanenkov , Roman D. Pirozhkov , Boris B. Kositsyn , Georgy O. Kotiev
Tractors and Agricultural Machinery ›› 2023, Vol. 90 ›› Issue (2) : 133 -147.
The method of development of the electronic control system for curvilinear motion of a high-speed tracked vehicle with dual-flow transmission
BACKGROUND: Handling and safety requirements to high-speed tracked vehicles (HSTV) rise in tandem with the growth of average motion velocities. The issue of ensuring continuously variable turn radius at curvilinear motion is relevant for HSTVs. Current layouts of steering mechanisms are able to meet this requirement, however they have certain disadvantages and are not compatible with electronic systems improving motion safety and lowering demands to mechanic-drivers’ skills.
AIMS: The synthesis of control laws for dual-flow transmission with a hydrostatic steering mechanism (HSSM) controlled by an electromechanical actuator which exclude “hard” links between steering handwheel and working volume adjustment mechanism of the HSSM.
METHODS: The study methods are based on using numerical simulation and ensuring real-time operation of the developed models. In addition, the study methods include synthesis of control algorithms for vehicle’s mechanical systems, used in on-board controllers, with adequacy assessment at virtual and laboratory experiments.
RESULTS: The method of development of control systems (CS) making possible to develop and to debug CSs without a HSTV prototype has been put into force. With using the described method, the total time of CS development and debugging reduces. Workability of the method is proved with the example of development of the CS for curvilinear motion of the HSTV with dual-flow transmission.
CONCLUSIONS: The study aim has been achieved, the accomplished work shows validity of the given methof of CS development.
high-speed tracked vehicle / curvilinear motion / control system / dual-flow transmission / hydrostatic steering mechanism
| [1] |
Ziye Z, Haiou L, Huiyan C, et al. Kinematics-aware model predictive control for autonomous high-speed tracked vehicles under off-road conditions. Mechanical Systems and Signal Processing. 2019;123:333–350. doi: 10.1016/j.ymssp.2019.01.005 |
| [2] |
Ziye Z., Haiou L., Huiyan C., et al. Kinematics-aware model predictive control for autonomous high-speed tracked vehicles under off-road conditions // Mechanical Systems and Signal Processing. 2019. Vol. 123. P. 333–350. doi: 10.1016/j.ymssp.2019.01.005 |
| [3] |
Zhou T, Angeles J, Hassani F. Dynamic modeling and trajectory tracking control of unmanned tracked vehicles. Robotics and Autonomous Systems. 2018;110:102–111. doi: 10.1016/j.robot.2018.09.008 |
| [4] |
Zhou T., Angeles J., Hassani F. Dynamic modeling and trajectory tracking control of unmanned tracked vehicles // Robotics and Autonomous Systems. 2018 Vol. 110. P. 102–111. doi: 10.1016/j.robot.2018.09.008 |
| [5] |
Chobitok VA. The theory of the movement of tanks and infantry fighting vehicles. Moscow: Voenizdat; 1984. (in Russ.) |
| [6] |
Чобиток В.А. Теория движения танков и БМП. М.: Воениздат, 1984. |
| [7] |
Zabavnikov NA. Fundamentals of the theory of transport tracked vehicles. Moscow: Mashinostroenie; 1975. (in Russ.) |
| [8] |
Забавников Н.А. Основы теории транспортных гусеничных машин. М.: Машиностроение, 1975. |
| [9] |
Derzhansky VB, Taratorkin IA, Zhebelev KS. Study of the Dynamics of Controlled Motion of High-Speed Tracked Vehicles. Vestnik YuUrGU. 2006;11:114–121. (in Russ.) |
| [10] |
Держанский В.Б., Тараторкин И.А., Жебелев К.С. Исследование динамики управляемого движения быстроходных гусеничных машин // Вестник ЮУрГУ. 2006. №11. С. 114–121. |
| [11] |
Tang S, Yuan S, Hu J, et al. Modeling of steady-state performance of skid-steering for high-speed tracked vehicles. J. Terramechanics. 2017;73:25–35. doi: 10.1016/j.jterra.2017.06.003 |
| [12] |
Tang S., Yuan S., Hu J., et al. Modeling of steady-state performance of skid-steering for high-speed tracked vehicles // J. Terramechanics. 2017. Vol. 73. P. 25–35. doi: 10.1016/j.jterra.2017.06.003 |
| [13] |
Alyabiev VA, Kondakov SV, Malakhovetsky AA, et al. Digital twin of a high-speed tracked vehicle with an onboard hydrostatic steering mechanism. Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Mashinostroenie. 2022;22(2):59–70. (in Russ.) |
| [14] |
Алябьев В.А., Кондаков С.В., Малаховецкий А.А. и др. Цифровой двойник быстроходной гусеничной машины с бортовым гидрообъемным механизмом поворота // Вестник Южно-Уральского государственного университета. Серия: Машиностроение. 2022. Т. 22, № 2. С. 59–70. |
| [15] |
Buzunov NV. Metod razrabotki zakonov upravleniya nagruzhatelem rulevogo kolesa pri otsutstvii «zhestkoy» svyazi v sisteme upravleniya povorotom kolesnykh mashin. [dissertation] Moscow; 2017. (in Russ.) |
| [16] |
Бузунов Н.В. Метод разработки законов управления нагружателем рулевого колеса при отсутствии «жесткой» связи в системе управления поворотом колесных машин: дисc. … канд. техн. наук. М., 2017. |
| [17] |
Kositsyn BB, Kotiev GO, Miroshnichenko AV, et al. Determination of the characteristics of transmissions of wheeled and tracked vehicles with an individual electric drive of the driving wheels. Trudy NAMI. 2019;3:22–35. (in Russ.) |
| [18] |
Косицын Б.Б., Котиев Г.О., Мирошниченко А.В. и др. Определение характеристик трансмиссий колесных и гусеничных машин с индивидуальным электроприводом ведущих колес // Труды НАМИ. 2019. № 3. С. 22–35. |
| [19] |
Zhai L, Huang H, Sun T, et al. Investigation of Energy Efficient Power Coupling Steering System for Dual Motors Drive High Speed Tracked Vehicle. Energy Procedia. 2016;104:372–377. doi: 10.1016/j.egypro.2016.12.063 |
| [20] |
Zhai L., Huang H., Sun T., et al. Investigation of Energy Efficient Power Coupling Steering System for Dual Motors Drive High Speed Tracked Vehicle // Energy Procedia. 2016. Vol 104. P. 372–377. doi: 10.1016/j.egypro.2016.12.063 |
| [21] |
Stadukhin AA. Nauchnye metody opredeleniya ratsionalnykh parametrov elektromekhani-cheskikh transmissiy vysokopodvizhnykh gusenichnykh mashin [dissertation] Moscow; 2021. (in Russ.) |
| [22] |
Стадухин А.А. Научные методы определения рациональных параметров электромеханических трансмиссий высокоподвижных гусеничных машин: дисc. … д-ра техн. наук. М., 2021. |
| [23] |
Farobin YaE. Theory of rotation of transport vehicles. Moscow: Mashinostroenie. 1970. (in Russ.) |
| [24] |
Фаробин Я.Е. Теория поворота транспортных машин. М.: Машиностроение. 1970. |
| [25] |
Krasnenkov VI, Kharitonov SA. Dynamics of curvilinear motion of a tracked transport vehicle. Trudy MVTU. 1980;339:3–67. (in Russ.) |
| [26] |
Красненьков В.И., Харитонов С.А. Динамика криволинейного движения транспортной гусеничной машины // Труды МВТУ. 1980. № 339. С. 3–67. |
| [27] |
Krasnenkov VI, Lovtsov YuI, Kharitonov SA. Simulation modeling of the movement of a transport tracked vehicle and evaluation of its reactions to disturbances. Trudy MVTU. 1988;506:126–160. (in Russ.) |
| [28] |
Красненьков В.И., Ловцов Ю.И., Харитонов С.А. и др. Имитационное моделирование движения транспортной гусеничной машины и оценка ее реакций на возмущения // Труды МВТУ. 1988. № 506. C. 126–160. |
| [29] |
Kotiev GO, Pankratov MS, Polungyan AA. Simulation modeling of the movement of an all-wheel drive wheeled vehicle with a continuously variable transmission. Vestnik MGTU im NE Baumana. Ser. “Mashinostroenie”. 2004;4(57):3–14. (in Russ.) |
| [30] |
Котиев Г.О., Панкратов М.С., Полунгян А.А. Имитационное моделирование движения полноприводной колесной машины с бесступенчатой трансмиссией // Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение”. 2004. № 4(57). С. 3–14. |
| [31] |
Gorelov VA, Kositsyn BB, Miroshnichenko AV, et al. The regulator of the steering control system of a high-speed tracked vehicle with an individual drive of the driving wheels. Izvestiya MGTU «MAMI». 2019;13(4):21–28. (in Russ.) doi: 10.31992/2074-0530-2019-42-4-21-28 |
| [32] |
Горелов В.А., Косицын Б.Б., Мирошниченко А.В. и др. Регулятор системы управления поворотом быстроходной гусеничной машины с индивидуальным приводом ведущих колёс // Известия МГТУ «МАМИ». 2019. Т. 13, № 4. С. 21–28. doi: 10.31992/2074-0530-2019-42-4-21-28 |
| [33] |
Afanasiev BA, Belousov BN, Zheglov LF. Designing all-wheel drive wheeled vehicles: A textbook for universities. Moscow: MGTU im NE Baumana; 2008;3. (in Russ.) |
| [34] |
Афанасьев Б.А., Белоусов Б.Н., Жеглов Л.Ф. и др. Проектирование полноприводных колесных машин: Учебник для вузов. Т. 3. М.: МГТУ им. Н.Э. Баумана, 2008. |
| [35] |
Stadukhin AA. Study of the relationship between the theoretical and actual turning radii of a tracked vehicle using mathematical modeling. Izvestiya MGTU «MAMI». 2020;14(4):88–100. (in Russ.) doi: 10.31992/2074-0530-2020-46-4-88-100 |
| [36] |
Стадухин А.А. Исследование взаимосвязи между теоретическим и фактическим радиусами поворота гусеничной машины с помощью математического моделирования // Известия МГТУ «МАМИ». 2020. Т. 14, № 4. С. 88–100. doi: 10.31992/2074-0530-2020-46-4-88-100 |
Eco-Vector
/
| 〈 |
|
〉 |