The justification of functional properties of agricultural moving power units in the multi-objective scenario

Teymur Z. Godzhaev , Valeriya A. Zubina , Ivan S. Malakhov

Tractors and Agricultural Machinery ›› 2022, Vol. 89 ›› Issue (6) : 411 -420.

PDF
Tractors and Agricultural Machinery ›› 2022, Vol. 89 ›› Issue (6) :411 -420. DOI: 10.17816/0321-4443-121325
Theory, designing, testing
research-article

The justification of functional properties of agricultural moving power units in the multi-objective scenario

Author information +
History +
PDF

Abstract

BACKGROUND: Considering the developed technical facilities like moving power units (MPU) used in agricultural industry are described with numerous quality criteria, the design development issues should be solved in multi-objective and multi-factorial scenario. Therefore, the development of mathematical tools and software for solving these issues is a relevant aim [1-3].

AIMS: Determination of optimal functional properties of an agricultural MPU with numerous quality criteria including the conflictive ones.

METHODS: In this study, the algorithmic software for multi-objective optimization of functional properties of agricultural moving power units has been developed. The simulation models of MPU’s dominating quality criteria, functional limits and initial conditions for solving the multi-objective optimization task of MPU’s properties determination at the design and improvement stages are given. According to the expert assessment, the chosen dominating criteria are pressure on soil, productive capacity, energetic assessment based on relative reduction of total specific fuel-energy consumption, total maintenance costs and energy efficiency.

RESULTS: The calculations of quality criteria values in testing points – in the studied parameter space – were performed. According to the developed algorithm, the range of acceptable results for the MPU’s functional and design properties, which meet all criterial and functional limits given by the decision-making person (DMP), was derived. In addition, the Pareto set of solutions (points), which are the best options of the MPU’s functional properties and do not disgrace each other on totality of criteria, was derived. According to the optimization analysis, the DMP chooses the only one point from the Pareto set.

CONCLUSIONS: The developed mathematical models and the software based on the models are helpful to optimize the properties of agricultural moving power units with regard to various quality criteria including conflictive, functional, service criteria, etc. The software set allows performing the multi-objective optimization of an object with the total amount of considered quality criteria of up to 20 and with up to 50 variable parameters. . In order to use this software set to optimize other technical objects and tools, it is necessary to update the mathematical apparatus and, as a consequence, the software.

Keywords

multi-objective optimization / moving power units / functional properties / quality criteria / variable parameters / the Pareto set

Cite this article

Download citation ▾
Teymur Z. Godzhaev, Valeriya A. Zubina, Ivan S. Malakhov. The justification of functional properties of agricultural moving power units in the multi-objective scenario. Tractors and Agricultural Machinery, 2022, 89(6): 411-420 DOI:10.17816/0321-4443-121325

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gojaev ZA, Faradzhev FA, Matveev EA, Nadezhdin VS. Perspective methods of designing load-bearing systems of motor vehicles taking into account many criteria. Technology of wheeled and tracked machines. 2012;(3):18–24. (In Russ).

[2]

Годжаев З.А., Фараджев Ф.А., Матвеев Е.А., Надеждин В.С. Перспективные методы проектирования несущих систем автотранспортных средств с учетом многих критериев // Технология колесных и гусеничных машин. 2012. № 3. С. 18–24.

[3]

Gojaev ZA, Sergeev VN, Faradzhev FA. Multicriteria choice of an effective frame design. Tractors and agricultural machinery. 2006;(3):20–24. (In Russ).

[4]

Годжаев З.А., Сергеев В.Н., Фараджев Ф.А. Многокритериальный выбор эффективной конструкции рамы // Тракторы и сельскохозяйственные машины. 2006. № 3. С. 20–24.

[5]

Karpenko AP, Fedoruk VG. Review of multi-criteria optimization software systems. Domestic systems. Information technologies. 2008;(1):15–22. (In Russ).

[6]

Карпенко А.П., Федорук В.Г. Обзор программных систем многокритериальной оптимизации. Отечественные системы // Информационные технологии. 2008. № 1. С. 15–22.

[7]

Bakhmutov SV, Visich RB, Akhmedov AA, Maltsev PA. Applied software complex for designing and fine-tuning of automotive equipment by methods of multi-criteria parametric optimization. Izvestiya MGTU “MAMI”. 2010;(2):95–97. (In Russ).

[8]

Бахмутов С.В., Висич Р.Б., Ахмедов А.А., Мальцев П.А. Прикладной программный комплекс для проектирования и доводки автомобильной техники методами многокритериальной параметрической оптимизации // Известия МГТУ МАМИ. 2010. № 2. С. 95–97.

[9]

Statnikov R, Matusov J, Statnikov A. Multicriteria engineering optimization problems: Statement, solution and applications. J Optim Theory Appl. 2012;155(2):355–375. doi: 10.1007/s10957-012-0083-9

[10]

Statnikov R., Matusov J., Statnikov A. Multicriteria engineering optimization problems: Statement, solution and applications // J Optim Theory Appl. 2012. Vol. 155. No 2. P. 355–375. doi: 10.1007/s10957-012-0083-9

[11]

Lavrov AV, Zubina VA. Systematization of automation elements used in agriculture. Agrarian scientific journal. 2021;(4):94–97. (In Russ). doi: 10.28983/asj.y2021i4pp94-97

[12]

Лавров А.В., Зубина В.А. Систематизация элементов автоматизации, применяемых в сельском хозяйстве // Аграрный научный журнал. 2021. № 4. С. 94–97. doi: 10.28983/asj.y2021i4pp94-97

[13]

Sobol IM, Statnikov RB. The choice of optimal parameters in problems with many criteria: textbook. 2nd ed., revised and updated. Moscow: Drofa; 2006. 175 p. (In Russ).

[14]

Соболь И.М., Статников Р.Б. Выбор оптимальных параметров в задачах со многими критериями: учебное пособие. Изд. 2-е, перераб. и доп. Москва: Дрофа, 2006. 175 с.

[15]

Gojaev ZA, Lavrov AV, Shevtsov VG, Zubina VA. On the methodology for assessing the level of localization of production of agricultural tractors. Tractors and agricultural machinery. 2020;(5):18–24. (In Russ). doi: 10.31992/0321-4443-2020-5-18-24

[16]

Годжаев З.А., Лавров А.В., Шевцов В.Г., Зубина В.А. О методике оценки уровня локализации производства сельскохозяйственных тракторов // Тракторы и сельхозмашины. 2020. № 5. С. 18–24. doi: 10.31992/0321-4443-2020-5-18-24

[17]

Averina TA. Numerical methods. Verification of algorithms for solving systems with a random structure: a textbook for universities. Moscow: Yurayt; 2019. 179 p. (In Russ).

[18]

Аверина Т.А. Численные методы. Верификация алгоритмов решения систем со случайной структурой: учебное пособие для вузов. Москва: Издательство Юрайт, 2019. 179 с.

[19]

Shevtsov VG, Lavrov AV, Zubina VA, Gurylev GS. Principal signs of a narrowed type of agricultural production. Scientific and technical support of the agro-industrial complex of Siberia: Materials of the International Scientific and Technical Conference, June 07–09, 2017. Vol. 1. Krasnoobsk; 2017. Р. 235–241. (In Russ).

[20]

Шевцов В.Г., Лавров А.В., Зубина В.А., Гурылев Г.С. Принципиальные признаки суженного типа воспроизводства в сельском хозяйстве // Научно-техническое обеспечение АПК Сибири: материалы Международной научно-технической конференции, 07–09 июня 2017 г. Т. 1. Краснообск, 2017. С. 235–241.

RIGHTS & PERMISSIONS

Godzhaev T.Z., Zubina V.A., Malakhov I.S.

PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

/