Calculation of the required minimum of a motor oil level on cylinder-piston group moving surfaces of the automotive diesel
Sergey V. Putintsev , Sergey A. Anikin , Sofia P. Demenkova , Sofya S. Strelnikova
Tractors and Agricultural Machinery ›› 2022, Vol. 89 ›› Issue (1) : 53 -65.
Calculation of the required minimum of a motor oil level on cylinder-piston group moving surfaces of the automotive diesel
BACKGROUND: Theme of this article is actual because issues of the reliable and cost-effective opera-tion of augmented automotive piston engines are still not solved. An important aspect of solving the problem is rational oil supply of the cylinder-piston group.
AIMS: The purpose of this work is the required minimum motor oil level estimation for the hydrodynamic lubrication of the “cylinder-piston skirt” pair. There were set and solved the tasks of determining the volume of motor oil capable of filling: 1) cavities of the flat-topped surface of the cylinder; 2) a raised surface of the piston skirt and 3) the piston skirt clearance. The object of study is an automotive diesel.
METHODS: Three types of analytical determination of the total volume of the cavities of the rough surface and the piston skirt clearance were used as methods for estimation of a motor oil level.
RESULTS: It was found, that the estimation with the well known formula for oil volume (a method 1) gives the overevaluated result of oil level estimation, in comparison with methods 2 and 3, which taking into account the real geometry of cavities and roughness parameters. The advantage of method 3 was determened by criteria of generalization and of simplicity to apply. Using the method 3, the estimated volume of motor oil ensured the hydrodynamic lubrication mode of the “cylinder – piston skirt” pair of the object of study was obtained.
CONCLUSION: The analytical expressions obtained by method 3 can be recommended to optimize the piston engine lubrication systems for reducing the friction and wear losses as well as to minimize a risk of oil starvation and increased oil consumption through burning.
diesel / motor oil / roughness / surface / cylinder / piston skirt
| [1] |
Walch S, Hick H, Edtmayer J, et al. Multimethod concept for continuous wear-analysis of the piston group. SAE Technical Paper. 2018;(2018-01-0839). doi: 10.4271/2018-01-0839 |
| [2] |
Walch S., Hick H., Edtmayer J., et al. Multimethod concept for continuous wear-analysis of the piston group // SAE Technical Paper. 2018. N 2018-01-0839. doi: 10.4271/2018-01-0839 |
| [3] |
Tormos B, Martín J, Carreño R, Ramírez L. A general model to evaluate mechanical losses and auxiliary energy consumption in reciprocating internal combustion engines. Tribology International. 2018;123:161–179. doi: 10.1016/j.triboint.2018.03.007 |
| [4] |
Tormos B., Martín J., Carreño R., Ramírez L. A general model to evaluate mechanical losses and auxiliary energy consumption in reciprocating internal combustion engines // Tribology International. 2018. Vol. 123. P. 161–179. doi: 10.1016/j.triboint.2018.03.007 |
| [5] |
Wróblewski E, Finke S, Babiak M. Investigation of friction loss in internal combustion engine of experimental microgeometry piston bearing surface. Journal of KONES. 2017;24(2):307–313. doi: 10.5604/01.3001.0010.2951 |
| [6] |
Wróblewski E., Finke S., Babiak M. Investigation of friction loss in internal combustion engine of experimental microgeometry piston bearing surface // Journal of KONES. 2017. Vol. 24, N 2. P. 307–313. doi: 10.5604/01.3001.0010.2951 |
| [7] |
Meng Z, Ahling S, Tian T. Study of the Effects of Oil Supply and Piston Skirt Profile on Lubrication Performance in Power Cylinder Systems. SAE Technical Paper. 2019;(2019-01-2364). doi: 10.4271/2019-01-2364 |
| [8] |
Meng Z., Ahling S., Tian T. Study of the Effects of Oil Supply and Piston Skirt Profile on Lubrication Performance in Power Cylinder Systems // SAE Technical Paper. 2019. N 2019-01-2364. doi: 10.4271/2019-01-2364 |
| [9] |
Li H, Liu H, Jiang S, Chang J. A study on the oil transport in piston skirt-cylinder liner under fully flooded conditions using improved SPH simulations. Engineering Analysis with Boundary Elements. 2019;109:176-186. doi: 10.1016/j.enganabound.2019.09.017 |
| [10] |
Li H., Liu H., Jiang S., Chang J. A study on the oil transport in piston skirt-cylinder liner under fully flooded conditions using improved SPH simulations // Engineering Analysis with Boundary Elements. 2019. Vol. 109, P. 176–186. doi: 10.1016/j.enganabound.2019.09.017 |
| [11] |
Putintsev SV, Anikin SA, Ratnikov AS. Analitiko-raschetnoe sopostavlenie gladkoi i sherokhovatoi poverkhnostei treniya tsilindra porshnevogo dvigatelya s pozitsii gidrodinamiki i tribologii. Avtomobil’naya promyshlennost’. 2018;(7):13–17. (In Russ). |
| [12] |
Путинцев С.В., Аникин С.А., Ратников А.С. Аналитико-расчетное сопоставление гладкой и шероховатой поверхностей трения цилиндра поршневого двигателя с позиций гидродинамики и трибологии // Автомобильная промышленность. 2018. № 7. С. 13–17. |
| [13] |
Pashkevich VM, Afanevich VV. Computer modeling and analysis of surface lubricant capacitance. Vestnik Mogilevskogo gosudarstvennogo tekhnicheskogo universiteta. 2006;(1):198–204. (In Russ). |
| [14] |
Пашкевич В.М., Афаневич В.В. Компьютерное моделирование и анализ маслоемкости поверхности // Вестник Могилевского государственного технического университета. 2006. № 1. С. 198–204. |
| [15] |
Kuznetsov VР, Dmitrieva OV. Modelirovanie i issledovanie formirovaniya ploskovershinnogo mikrorel’efa poverkhnostei treniya so smazochnymi mikrokarmanami pri mnogotselevoi obrabotke detalei. Bulletin of Tomsk Polytechnic University. 2011; 319(2):35–40. (In Russ). |
| [16] |
Кузнецов В.П., Дмитриева О.В. Моделирование и исследование формирования плосковершинного микрорельефа поверхностей трения со смазочными микрокарманами при многоцелевой обработке деталей // Известия Томского политехнического университета. 2011. Т. 319. № 2. С. 35–40. |
| [17] |
Minakov AP, Yashchuk OV, Sokolov VN, Pavlovich VP. Analiticheskii obzor metodik opredeleniya masloemkosti poverkhnosti zerkala gil’zy dvigatelya vnutrennego sgoraniya. Vestnik mashinostroeniya. 1999;(10):14–16. |
| [18] |
Минаков А.П., Ящук О.В., Соколов В.Н., Павлович В.П. Аналитический обзор методик определения маслоемкости поверхности зеркала гильзы двигателя внутреннего сгорания // Вестник машиностроения. 1999. № 10. С. 14–16. |
| [19] |
Baranov VL, Dronov EA, Lavrukhin VN, Tret’yakov NV. Finish machining the inner surface of cylinder of explosion engine. Izvestiya Tul’skogo Gosudarstvennogo universiteta. Tekhnicheskie nauki. 2016;(12-2):15–21. (In Russ). |
| [20] |
Баранов В.Л., Дронов Е.А., Лаврухин В.Н., Третьяков Н.В. Финишная обработка внутренней поверхности цилиндров двигателя внутреннего сгорания // Известия Тульского государственного университета. Технические науки. 2016. № 12–2. С. 15–21. |
| [21] |
Putintsev SV, Ageev AG. Rezul’taty modelirovaniya deformatsii yubki porshnya bystrokhodnogo dizelya ot deistviya gidrodinamicheskogo davleniya masla. Dvigatelestroenie. 2015; 261(3):18–21. (In Russ). |
| [22] |
Путинцев С.В., Агеев А.Г. Результаты моделирования деформации юбки поршня быстроходного дизеля от действия гидродинамического давления масла // Двигателестроение. 2015. Т. 261, № 3. С. 18–21. |
| [23] |
Mitin IV, Nepogod’ev AV. Novyi metod izmereniya ispareniya masla pri ispytaniyakh DVS. Dvigatelestroenie. 1981;(8):45–47. (In Russ). |
| [24] |
Митин И.В., Непогодьев А.В. Новый метод измерения испарения масла при испытаниях ДВС // Двигателестроение. 1981. № 8. С. 45–47. |
Putintsev S.V., Anikin S.A., Demenkova S.P., Strelnikova S.S.
/
| 〈 |
|
〉 |