Analysis of phagocytic activity of peripheral blood and exudate leukocytes in patients with facial phlegmon

A. P. Godovalov , G. I. Shtraube , I. A. Boev

Perm Medical Journal ›› 2022, Vol. 39 ›› Issue (2) : 55 -60.

PDF
Perm Medical Journal ›› 2022, Vol. 39 ›› Issue (2) :55 -60. DOI: 10.17816/pmj39255-60
Methods of diagnosis and technologies
research-article

Analysis of phagocytic activity of peripheral blood and exudate leukocytes in patients with facial phlegmon

Author information +
History +
PDF

Abstract

Objective. To assess the phagocytic activity of peripheral blood and exudate leukocytes in patients with facial phlegmon.  Currently, relatively little attention is paid to assessing the functional activity of peripheral blood and exudate leukocytes in facial phlegmon, the incidence of which is characterized by an increase in the number of cases and, especially, among patients with comorbid pathology.

Materials and methods. To study the phagocytic activity of leukocytes using a method based on the assessment of the absorption of formalinized sheep erythrocytes by neutrophils and monocytes, the samples of peripheral blood and exudate were obtained from 18 patients diagnosed facial phlegmon. Blood leukocytes obtained from 29 healthy donors were used as a comparison group.

Results. It was shown that for patients with phlegmon of the face, an increase in the phagocytic activity of peripheral blood leukocytes is characteristic. There was observed a redistribution of leukocytes according to the number of absorbed objects towards an increase in actively phagocytizing cells – 4438 ± 721 per 1 μl (in the comparison group – 297 ± 67 per 1 μl; p < 0.05). However, after migration to the foci of the pathological process, leukocytes lost their phagocytic activity and the number of phagocytic cells decreased to 35.0 ± 8.3 % (for peripheral blood leukocytes of the same patients – 64.3 ± 5.4 %; p < 0.05). Changes in the phagocytic activity of exudate leukocytes affected both neutrophils and monocytes.

Conclusions. Thus, in patients with phlegmon of the face, changes in the phagocytic activity of blood leukocytes are probably associated with the indirect influence of cytokines, and in the focus of inflammation, leukocytes come under pressure from microorganisms. In such a situation, it is necessary to select an effective immunotropic therapy.

Keywords

facial phlegmon / phagocytic activity / leukocytes / neutrophils / monocytes / exudate

Cite this article

Download citation ▾
A. P. Godovalov, G. I. Shtraube, I. A. Boev. Analysis of phagocytic activity of peripheral blood and exudate leukocytes in patients with facial phlegmon. Perm Medical Journal, 2022, 39(2): 55-60 DOI:10.17816/pmj39255-60

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boev I.A., Godovalov A.P. Study of the etiological structure of pathogens with facial phlegmon. Bakteriologija 2017; 2 (3): 50–51 (in Russian).

[2]

Боев И.А., Годовалов А.П. Изучение этиологической структуры возбудителей при флегмоне лица. Бактериология 2017; 2 (3): 50–51.

[3]

Boev I.A., Shtraube G.I., Antakov G.I., Godovalov A.P. Some epidemiological and microbiological aspects of the incidence of facial phlegmon in the Perm region. Infekcija i immunitet 2017; S: 905 (in Russian).

[4]

Боев И.А., Штраубе Г.И., Антаков Г.И., Годовалов А.П. Некоторые эпидемиологические и микробиологические аспекты заболеваемости флегмонами лица в Пермском крае. Инфекция и иммунитет 2017; S: 905.

[5]

Boev I.A., Shtraube G.I., Antakov G.I., Godovalov A.P. Endogenous intoxication in patients with facial phlegmon. Klinicheskaja stomatologija 2018; 1 (85): 54–57 (in Russian).

[6]

Боев И.А., Штраубе Г.И., Антаков Г.И., Годовалов А.П. Эндогенная интоксикация у пациентов с флегмонами лица. Клиническая стоматология 2018; 1 (85): 54–57.

[7]

Shhenin A.V. Features of oral immunity indices in patients with phlegmons of the maxillofacial region against the background of non-insulin dependent diabetes mellitus. Chelovek i ego zdorov'e 2021; 24 (1): 10–18 (in Russian).

[8]

Щенин А.В. Особенности показателей иммунитета полости рта у пациентов с флегмонами челюстно-лицевой области на фоне инсулиннезависимого сахарного диабета. Человек и его здоровье 2021; 24 (1): 10–18.

[9]

Blasi F., Tarsia P., Aliberti S. Strategic tar-gets of essential host-pathogen interac-tions. Respiration 2005; 72 (1): 9–25.

[10]

Blasi F., Tarsia P., Aliberti S. Strategic targets of essential host pathogen interactions. Respiration 2005; 72 (1): 9–25.

[11]

Platt N., Fineran P. Measuring the phagocytic activity of cells. Methods. Cell. Biol. 2015; 126: 287–304.

[12]

Shilov Ju.I., Shilov S.Ju., Zhukova A.E., Barkov S.Ju., Petuhova A.A. Changes in the level of acidification of phagosomes in rats depending on the phase of the estrous cycle. Rossijskij immunologicheskij zhurnal 2016; 10 (2): 183 (in Russian).

[13]

Шилов Ю.И., Шилов С.Ю., Жукова А.Е., Барков С.Ю., Петухова А.А. Изменение уровня ацидификации фагосом у крыс в зависимости от фазы эстрального цикла. Российский иммунологический журнал 2016; 10 (2): 183.

[14]

Shilov J.I., Orlova E.G. Role of adrenergic mechanisms in regulation of phagocytic cell functions in acute stress response. Immunol. Lett. 2003; 86 (3): 229–33.

[15]

Sansonetti P. Phagocytosis of bacterial pathogens: implications in the host response. Semin. Immunol. 2001; 13 (6): 381–90.

[16]

Jentho E., Weis S. DAMPs and Innate Immune Training. Front. Immunol. 2021; 12: 699563.

[17]

Jentho E., Weis S. DAMPs and Innate Immune Training. Front Immunol 2021; 12: 699563.

[18]

Dinges M.M., Orwin P.M., Schlievert P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000; 13 (1): 16–34.

[19]

Otto M. Molecular basis of Staphylococcus epidermidis infections. Semin. Immunopathol. 2012; 34 (2): 201–14.

[20]

Kaufmann S.H.E., Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity. 2016; 44 (3): 476–491.

[21]

Kaufmann S.H.E., Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 2016; 44 (3): 476–491.

[22]

Hipolito V.E.B., Ospina-Escobar E., Botelho R.J. Lysosome remodelling and adaptation during phagocyte activation. Cell. Microbiol. 2018; 20 (4): 1–8.

[23]

Hipolito V.E.B., Ospina-Escobar E., Bo-telho R.J. Lysosome remodelling and adaptation during phagocyte activation. Cell. Microbiol. 2018; 20 (4): 1–8.

[24]

Ernst J.D. Bacterial inhibition of phagocytosis. Cell. Microbiol. 2000; 2 (5): 379–86.

[25]

Abreu A.G, Barbosa A.S. How Escherichia coli Circumvent Complement-Mediated Killing. Front. Immunol. 2017; 8: 452.

[26]

Kwinn L.A., Nizet V. How group A Streptococcus circumvents host phagocyte defenses. Future Microbiol. 2007; 2 (1): 75–84.

[27]

Miyoshi-Akiyama T., Takamatsu D., Koyanagi M., Zhao J., Imanishi K., Uchiyama T. Cytocidal effect of Streptococcus pyogenes on mouse neutrophils in vivo and the critical role of streptolysin S. J. Infect. Dis. 2005; 192 (1): 107–116.

RIGHTS & PERMISSIONS

Godovalov A.P., Shtraube G.I., Boev I.A.

AI Summary AI Mindmap
PDF

286

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/