Modification of emulsified fat (nanofat) obtaining procedures

N. I. Khramtsova , S. A. Plaksin , N. I. Gulyaeva , A. Yu. Sotskov , D. N. Ponomarev

Perm Medical Journal ›› 2022, Vol. 39 ›› Issue (1) : 66 -73.

PDF
Perm Medical Journal ›› 2022, Vol. 39 ›› Issue (1) :66 -73. DOI: 10.17816/pmj39166-73
Methods of diagnosis and technologies
research-article

Modification of emulsified fat (nanofat) obtaining procedures

Author information +
History +
PDF

Abstract

Objective. To modify the procedure by reducing the number of filters and passages through them.

Materials and Methods. 16 samples of fat, aspirated by a syringe from the abdominal region were examined. Fat filtration was carried out through anaerobic fat transfers with an inner diameter of 1.4 mm and 1.2 mm, as well as an emulsifying filter (nanofat filter). The content of destroyed adipocytes and fibroblast-like cells was assessed.

Results. The 1.2 mm filter with 10 passages protocol provides determination of the minimal number of adipocytes while maintaining fibroblast-like cells. While filtrating through the 1.4 mm transfer, and then immediately through the “nanofat filter”, numerous connective tissue fibers with fibroblast-like cells are identified. When filtrating an adipose tissue using the 1.4 mm transfer 10 times, then – using “nanofat filter” 5 times, there was obtained a homogeneous fat emulsion with a high content of morphologically intact adipocytes, the particle diameter of which allows injecting with a thin needle syringe.

Conclusions. To obtain “nanofat”, it is possible to optimize the lipograft filtration protocol proposed by P. Tonnard (2013), depending on the purpose of using the obtained product.

Keywords

Adipose tissue / fat / nanofat / lipofilling / regenerative medicine

Cite this article

Download citation ▾
N. I. Khramtsova, S. A. Plaksin, N. I. Gulyaeva, A. Yu. Sotskov, D. N. Ponomarev. Modification of emulsified fat (nanofat) obtaining procedures. Perm Medical Journal, 2022, 39(1): 66-73 DOI:10.17816/pmj39166-73

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tonnard P., Verpaele A., Peeters G., Hamdi M., Cornelissen M., Declercq H. Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg 2013; 132 (4): 1017-1026.

[2]

Tonnard P., Verpaele A., Peeters G., Hamdi M., Cornelissen M., Declercq H. Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg 2013; 132 (4): 1017–1026.

[3]

Sesé B., Javier M., Ortega B., Matas-Palau A., Llull R. Nanofat Cell Aggregates: A Nearly Constitutive Stromal Cell Inoculum for Regenerative Site-Specific Therapies. Plast Reconstr Surg 2019; 144 (5): 1079-1088.

[4]

Sesé B., Javier M., Ortega B., Matas-Palau A., Llull R. Nanofat Cell Aggregates: A Nearly Constitutive Stromal Cell Inoculum for Regenerative Site-Specific Therapies. Plast Reconstr Surg 2019; 144 (5): 1079–1088.

[5]

Vasilyev V., Vasilyev S., Vazhenin A., Teryushkova Z., Vasilyev Y., Vasilyev I., Semyonova A., Dimov G., Lomakin E. An Algorithm for Treatment of Radiation-Induced Soft Tissue Damage with Products Based on Autologous Adipose Tissue. Plast Reconstr Surg Glob Open 2018; 6 (9): 155-156.

[6]

Vasilyev V., Vasilyev S., Vazhenin A., Teryushkova Z., Vasilyev Y., Vasilyev I., Semyonova A., Dimov G., Lomakin E. An Algorithm for Treatment of Radiation-Induced Soft Tissue Damage with Products Based on Autologous Adipose Tissue. Plast Reconstr Surg Glob Open 2018; 6 (9): 155–156.

[7]

Pascucci L., Mercati F., Marini C., Ceccarelli P., Dall'Aglio C., Pedini V., Gargiulo A.M. Ultrastructural morphology of equine adipose-derived mesenchymal stem cells. Histol Histopathol 2010; 25 (10): 1277-1285.

[8]

Pascucci L., Mercati F., Marini C., Ceccarelli P., Dall'Aglio C., Pedini V., Gargiulo A.M. Ultrastructural morphology of equine adipose-derived mesenchymal stem cells. Histol Histopathol 2010; 25 (10): 1277–1285.

[9]

Khramtsova N., Plaksin S., Sotskov A., Ponomarev D. Anaerobic fat transfers and emulsifiers for autologous fat grafting. Medical Measurements and Applications, MeMeA. Symposium Proceedings (SCOPUS) 2020.

[10]

Vasilyev V., Vasilyev S., Teryushkova Z., Vasilyev Y., Vasilyev I., Eremin I., Dimov G., Lomakin E. Mechanisms of biological action various products based on Autologous lipoaspirate and the possibilities of their clinical application. Materials of the IV National congress on regenerative medicine 2019; 6 (9): 50 (in Russian).

[11]

Васильев В., Васильев С., Терюшкова Ж., Васильев Ю., Васильев И., Еремин И., Димов Г., Ломакин Е. Механизмы биологического действия различных продуктов на основе аутологичного липоаспирата и возможности их клинического применения. Материалы IV Национального конгресса по регенеративной медицине 2019; 6 (9): 50.

[12]

Osinga R., Menzi N.R., Tchang L., Caviezel D., Kalbermatten D.F., Martin I., Schaefer D.J., Scherberich A., Largo R.D. Effects of intersyringe processing on adipose tissue and its cellular components: implications in autologous fat grafting. Plastic and reconstructive surgery 2015; 135 (6): 1618-1628.

[13]

Osinga R., Menzi N.R., Tchang L., Caviezel D., Kalbermatten D.F., Martin I., Schaefer D.J., Scherberich A., Largo R.D. Effects of intersyringe processing on adipose tissue and its cellular components: implications in autologous fat grafting. Plastic and reconstructive surgery 2015; 135 (6): 1618–1628.

[14]

Chen X., Hong S., Hong F., Yang B., Tong C., Zhang J. Mechanical emulsification of lipoaspirate by different Luer-Lok connector changes the viability of adipose derived stem cells in Nanofat. J Plast Surg Hand Surg 2020; 54 (6): 344-351.

[15]

Chen X., Hong S., Hong F., Yang B., Tong C., Zhang J. Mechanical emulsification of lipoaspirate by different Luer-Lok connector changes the viability of adipose derived stem cells in Nanofat. J Plast Surg Hand Surg 2020; 54 (6): 344–351.

RIGHTS & PERMISSIONS

Khramtsova N.I., Plaksin S.A., Gulyaeva N.I., Sotskov A.Y., Ponomarev D.N.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/