Updating of methodical approaches to noninvasive sampling of pulmonary surfactant biosamples

Anastasia I. Shmyrova , Irina M. Pshenichnikova-Peleneva , Ludmila I. Kononova , Vladimir P. Korobov

Perm Medical Journal ›› 2019, Vol. 36 ›› Issue (1) : 35 -44.

PDF
Perm Medical Journal ›› 2019, Vol. 36 ›› Issue (1) :35 -44. DOI: 10.17816/pmj36135-44
Methods of diagnosis and technologies
research-article

Updating of methodical approaches to noninvasive sampling of pulmonary surfactant biosamples

Author information +
History +
PDF

Abstract

Aim. To study the influence of conditions of sampling and storage of pulmonary surfactant (PS) biosamples in the exhaled air barbotate on its surface activity and biochemical structure, so as to develop clinical recommendations for PS status assessment.

Materials and methods. Tensiometry methods were used to study the glass, fluoroplastic and five polymer containers. Reproducibility of the results of physicochemical parameters of native material was assessed using thin-layer chromatography. Calibration of methods and scaling was implemented using exogenous surfactant solution.

Results. It was detected that for identification of phosphatidylcholine in the samples, it is necessary to introduce not less than 0.15 mcg of exogenous surfactant and for dipalmitoylphosphatidylcholine – from 0.5 mcg and more. The efficiency of PS sampling with the method of exhaled air barbotage varies from 30 % to 50 % from the volume of surfactant, excreted with one average statistical human expiration.

Conclusions. Sampling of native material using the method of exhaled air barbotage was performed. Tensiometric and chromatographic scales were compiled. Variability of sampling degree was noted. It was shown that if the conditions of storage and transport are observed, there are no marked changes in the material.

Keywords

Pulmonary surfactant / pulmonary tuberculosis / methods for surface tension study / automatization of diagnostic methods / tensiometry / thin-layer chromatography

Cite this article

Download citation ▾
Anastasia I. Shmyrova, Irina M. Pshenichnikova-Peleneva, Ludmila I. Kononova, Vladimir P. Korobov. Updating of methodical approaches to noninvasive sampling of pulmonary surfactant biosamples. Perm Medical Journal, 2019, 36(1): 35-44 DOI:10.17816/pmj36135-44

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Кейтс M. Техника липидологии. Выделение, анализ и идентификация липидов. М.: Мир 1975; 326.

[2]

Розенберг О.А., Ловачева О.В., Шаповалов К.Г., Акулова Е.А., Степанова О.В., Сейлиев А.А., Шульга А.Э. Сурфактант-терапия в комплексном лечении больных бронхиальной астмой. Влияние на клинические симптомы и показатели функции внешнего дыхания. Туберкулез и болезни легких 2018; 96 (9): 23–304.

[3]

Русанов А.И., Прохоров В.А. Межфазная тензиометрия. СПб.: Химия 1994; 400.

[4]

Сидоренко Г.И., Зборовский Э.И., Левина Д.И. Поверхностно-активные свойства конденсата выдыхаемого воздуха (новый способ исследования функций легких). Терапевтический архив 1980; 3: 65–68.

[5]

Baritussio A. Lung surfactant, asthma, and allergens – a story in evolution. Am. J. of Respir. Crit. Care Med. 2004; 169(5): 550–551.

[6]

Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959; 37(8): 911–917.

[7]

Bernhard W., Haagsman H.P., Tscher nig T., Poets C.F. Conductive airway surfactant: surface-tension function, biochemical composition, and possible alveolar origin. Am. J. Respir. Cell. Mol. Biol. 1997; 17(1): 41–50.

[8]

Chimote G., Banerjee R. Effect of mycobacterial lipids on surface properties of Curosurf (TM): Implications for lung surfactant dysfunction in tuberculosis. Resp. Phys. Neurobi. 2008; 162(1): 73–79.

[9]

Chimote G., Banerjee R. Lung surfactant dysfunction in tuberculosis: Effect of mycobacterial tubercular lipids on dipalmitoylphosphati dylcholine surface activity. Colloids and Surfaces B: Biointerfaces 2005; 45 (3–4): 215–223.

[10]

Clements J. Pulmonary surface tension and alveolar stability. Technical report. CRDLR. U.S. Army Chemical Research and Development Laboratories 1961; 16: 444–450.

[11]

Fewster M.E., Burns B.J., Mead J.F. Quantitative densitometric thin-layer chromatography of lipids using copper acetate reagent. J. Chromatogr. A. 1969; 43(1): 120–126.

[12]

Hasegawa T., Leblanc R.M. Aggregation properties of mycolic acid molecules in monolayer films: a comparative study of compounds from various acid-fast bacterial species. Biochi mica et. Biophysica Acta – Biomembranes 2003; 1617 (1–2): 89–95.

[13]

Hildebran J. Pulmonary surface film stability and composition. J. of Applied Physiology Respiratory Environmental and Exercise Physiology 1979; 47(3): 604–611.

[14]

Hohlfeld J. The role of surfactant in asthma. J. Respiratory Research 2001; 3: 1–8.

[15]

Horvath I., Hunt J., Barnes P.J. Exhaled breath condensate: Methodological recommendations and unresolved questions. European Respiratory J. 2005; 26: 523–548.

[16]

Klech H., Pohl W. Technical recommendations and guidelines for bronchoalveolar lavage (BAL). European Respiratory J. 1989; 2(6): 561–585.

[17]

Meyer K. Bronchoalveolar lavage as a diagnostic tool. Seminars in Respiratory and Critical Care Medicine 2007; 28(5): 546–560.

[18]

Mizev A., Shmyrova A., Mizeva I., Pshenichnikova-Peleneva I. Exhaled breath barbotage: A new method of pulmonary surfactant dysfunction assessing. J. of Aerosol Science 2018; 115: 62–69.

[19]

Notter R. Lung surfactants: basic science and clinical applications (lung biology in health and disease). P.: CRC Press 2000; 464.

[20]

Raghavendran K., Willson D., Notter R.H. Surfactant therapy for acute lung injury and acute respiratory distress syndrome. Critical Care Clinics 2011; 27(3): 525–559.

[21]

Rosenberg O.A., Bautin A.E., Seiliev A.A. Late start of surfactant therapy and surfactant drug composition as major causes of failure of phase III multi-center clinical trials of surfactant therapy in adults with ARDS. Inter. J. of Biomedicine 2018; 8(3): 253–25.

[22]

Schwab U., Rohde K.H., Wang Z., Chess P.R., Notter R.H., Russell D.G. Transcriptional responses of Mycobacterium tuberculosis to lung surfactant. Microbial Pathogenesis 2009; 46(4): 185–193.

[23]

Schwarz K., Biller H., Windt H., Koch W., Hohlfeld J.M. Characterization of exhaled particles from the healthy human lung – a systematic analysis in relation to pulmonary function variables. j. of aerosol medicine and pulmonary drug delivery 2010; 23 (6): 371–379.

[24]

Schwarz K., Biller H., Windt H., Koch W., Hohlfeld J.M. Characterization of exhaled particles from the human lungs in airway obstruction. J. of Aerosol Medicine and Pulmonary Drug Delivery 2015; 28(1): 52–58.

[25]

Stepanova O.V., Akulova E.A., Koch neva A.A., Seiliev A.A., Shulga A.Ed., Lovacheva O.V., Lukyanov S.A., Shapovalov K.G., Volchkov V.A., Rosenberg O.A. Influence of natural lung surfactant inhalations on clinical symptoms and pulmonary function parameters in patients with bronchial asthma. Communication 1. Inter. J. of Biomedicine 2016; 6(4): 255–258.

[26]

Walters E., Gardiner P. Bronchoalveolar lavage as a research tool. Thorax 1991; 46(9): 613–618.

[27]

Wang Z., Schwab U., Rhoades E., Chess P.R., Russell D.G., Notter R.H. Peripheral cell wall lipids of mycobacterium tuberculosis are inhibitory to surfactant function. Tuberculosis 2008; 88(3): 178–186.

[28]

Willson D., Chess P.R., Notter R.H. Surfactant for pediatric acute lung injury. Pediatric Clinics of North America 2008; 55(3): 545–575.

[29]

Wright T.W., Notter R.H., Wang Z., Harmsen A.G., Gigliotti F. Pulmonary inflammation disrupts surfactant function during Pneumocystis carinii pneumonia. Infection and Immunity 2001; 69: 758–764.

RIGHTS & PERMISSIONS

Shmyrova A.I., Pshenichnikova-Peleneva I.M., Kononova L.I., Korobov V.P.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/