CARNITINE CHLORIDE EFFECT ON FUNCTIONAL STATE OF MITOCHONDRIA IN CONDITIONS OF NITRIC OXIDE SYNTHESIS DEFICIT

V I Zvyagina , O M Uryasiev , E S Belskikh , D V Medvedev

Perm Medical Journal ›› 2015, Vol. 32 ›› Issue (3) : 108 -114.

PDF
Perm Medical Journal ›› 2015, Vol. 32 ›› Issue (3) :108 -114. DOI: 10.17816/pmj323108-114
Articles
research-article

CARNITINE CHLORIDE EFFECT ON FUNCTIONAL STATE OF MITOCHONDRIA IN CONDITIONS OF NITRIC OXIDE SYNTHESIS DEFICIT

Author information +
History +
PDF

Abstract

Aim. To study the effect of carnitine chloride on functional state of mitochondria and endogenous carnitine content in conditions of L-NAME-induced decrease in nitric oxide synthesis (II). Materials and methods. Twenty four Wistar rats were divided into the following groups: the control group, the group with intraperitoneal introduction of L-NAME in the dose of 25 mg/kg for 7 days and the group receiving L-NAME by the analogous scheme against the background of introduction of carnitine chloride in the dose of 300 mg/kg for 21 days. The animals experienced the study of lactate dehydrogenase (LDG), succinate dehydrogenase (SDG), superoxide dismutase (SOD), lactate, nitric oxide (II), carnitine (total, free, bound) and nonetherified fatty acid concentrations in the rat cardiomyocyte mitochondria. Results. L-NAME in the dose of 25 mg/kg led to decrease in NO metabolite (by 21,5 %, p < 0,05) and lactate (by 56 %, p < 0,05) concentrations in myocardiocyte mitochondria; at the same time, it increased nonetherified fatty acid (by 290 %, p < 0,05) and total carnitine (by 162 %, p < 0,05) content as well as activity of all the three measured oxidoreductases in mitochondrial cardiac tissues as compared to the control animal indices (LDG by 160 %, p < 0,05; SDG by 109 %, p < 0,05; SOD by 133 %, p < 0,05). Preliminary introduction of carnitine chloride induced reliable significant growth of SDG (by 163 %, p < 0,05) and SOD (by 376 %, p < 0,05) activity, rise in NO metabolite (by 437 %, p < 0,05) and lactate (by 62 %, p < 0,05) concentrations, as well as to fall in fatty acid (37 %, p < 0,05) and total carnitine (by 35 %, p < 0,05) concentrations and LDG activity (by 50 %, p < 0,05). Conclusions. Preliminary administration of cortinine chloride in the dose of 300 mg/kg before introduction of L-NAME in the dose of 25 mg/kg normalizes carnitine homeostasis, prevents decrease in NO metabolite concentration, declines nonetherified fatty acid concentration and significantly elevates SOD and SDG activity in the rat cardiomyocyte mitochondria.

Keywords

Carnitine / nitric oxide (II) / mitochondrial pathology

Cite this article

Download citation ▾
V I Zvyagina, O M Uryasiev, E S Belskikh, D V Medvedev. CARNITINE CHLORIDE EFFECT ON FUNCTIONAL STATE OF MITOCHONDRIA IN CONDITIONS OF NITRIC OXIDE SYNTHESIS DEFICIT. Perm Medical Journal, 2015, 32(3): 108-114 DOI:10.17816/pmj323108-114

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Граник В. Г., Григорьев Н. Б. Оксид азота (NO). Новый путь к поиску лекарств: монография. М.: Вузовская книга 2004; 360.

[2]

Дубинина Е. Е. Продукты метаболизма кислорода в функциональной активности клеток (жизнь и смерть, созидание и разрушение). Физиологические и клинико-биохимические аспекты. СПб.: Медицинская пресса 2006; 400.

[3]

Копелевич В. М. Витаминоподобные соединения L-карнитин и ацетил-L-карнитин: от биохимических исследований к медицинскому применению. Укр. Бiохiм. журн. 2005; 77 (4): 30-50.

[4]

Костюк В. А., Потапович А. И., Ковалева Ж. В. Простой и чувствительный метод определения активности супероксиддисмутазы, основанный на реакции окисления кверцитина. Вопросы медицинской химии 1990; 2: 88-91.

[5]

Метельская В. А., Гуманова Н. Г. Скрининг-метод определения уровня метаболитов оксида азота в сыворотке. Клиническая лабораторная диагностика 2005; 6: 15-18.

[6]

Методы биохимических исследований (липидный и энергетический обмен); под редакцией М. И. Прохоровой. Л.: Изд-во Ленингр. ун-та 1982; 327.

[7]

Мещерякова О. В., Чурова М. В., Немова Н. Н. Митохондриальный лактат-окисляющий комплекс и его значение для поддержания энергетического гомеостаза клеток. Современные проблемы физиологии и биохимии водных организмов. Экологическая физиология и биохимия водных организмов: сборник научных статей. Петрозаводск: Карельский научный центр РАН 2014; 1: 163-172.

[8]

Осипов А. Н., Борисенко Г. Г., Владимиров Ю. А. Биологическая роль нитрозильных комплексов гемпротеинов. Успехи биологической химии 2007; 47: 259-292.

[9]

Покровский М. В., Покровская Т. Г., Кочкаров В. И., Артюшкова Е. Б. Эндотелиопротекторные эффекты L-аргинина при моделировании дефицита окиси азота. Экспериментальная и клиническая фармакология 2008; 71(2): 29-31.

[10]

Dikalov S. Crosstalk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 2011; 51 (7): 1289-1301.

[11]

Marcovina S. M., Sirtori C., Peracino A. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine. The journal of laboratory and clinical medicine 2012; 73-84.

[12]

Michael P. Murphy How mitochondria produce reactive oxygen species. Biochem. J. 2009; 417 (1): 1-13.

[13]

Rajasekar P., Palanisamy, Anuradha C. V. Increase in nitric oxide and reduction in blood pressure, protein kinase C beta II and oxidative stress by L-carnitine: a study in the fructose-fed hypertensive rat. Clin. Exp. Hypertens. 2007; 29 (8): 517-530.

[14]

Sharma S., Sud N., Wiseman D. A., Carter A. L., Kumar S., Hou Y., Rau T., Wilham J., Harmon C., Oishi P. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2008; l294: 46-56.

[15]

Sharma S., Sun X., Agarwal S., Rafikov R., Dasarathy S., Kumar S., Black S. M. Role of carnitine acetyl transferase in regulation of nitric oxide signaling in pulmonary arterial endothelial. Cells. Int. J. Mol. Sci. 2013; 14 (1): 255-272.

[16]

Wan L., Hubbard R. W. Rapid assay for free carnitine measurement in plasma. Clin. Chem. 1995; 41: 159.

[17]

Xiaoqiang Tang, Yu-Xuan Luo, Hou-Zao Chen, De-Pei Liu. Mitochondria, endothelial cell function, and vascular diseases. Front. Physiol. 2014; 06: 175.

[18]

Yugo Miyata, Iichiro Shimomura. Metabolic flexibility and carnitine flux: The role of carnitine acyltransferase in glucose homeostasis. J. Diabetes Investig. 2013; 4 (3): 247-249.

RIGHTS & PERMISSIONS

Zvyagina V.I., Uryasiev O.M., Belskikh E.S., Medvedev D.V.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/