Comparison of efficiency losses due to leaks for turbine units of aviation air conditioning systems with petal-type gas-dynamic bearings and ball bearings

Vitaly S. Nikolaev , Sergey A. Abalakin , Igor V. Tishchenko

Refrigeration Technology ›› 2022, Vol. 111 ›› Issue (1) : 13 -20.

PDF
Refrigeration Technology ›› 2022, Vol. 111 ›› Issue (1) : 13 -20. DOI: 10.17816/RF96964
Original Study Articles
research-article

Comparison of efficiency losses due to leaks for turbine units of aviation air conditioning systems with petal-type gas-dynamic bearings and ball bearings

Author information +
History +
PDF

Abstract

BACKGROUND: Designers of turbomachines strive to increase the efficiency of expanding compressed gases by reducing all kinds of energy losses, particularly due to clearances between the impeller and the body elements of the turbomachine.

AIM: This article aimed to evaluate a possible increase in efficiency with a decrease in the radial and axial clearance between the blades of a radial-axial impeller and the casing of a centrifugal expander in the designs of turbomachines with ball bearings and petal-type gas-dynamic bearings.

MATERIALS AND METHODS: The radial and axial clearances between the blades of the radial-axial impeller and the centrifugal expander casing in the designs of turbomachines with ball bearings and petal-type gas-dynamic bearings were compared by analyzing the experience of Russian and international experts in developing turbomachines. Models were presented for estimating the efficiency losses of a centrifugal expander depending on the value of the radial and axial clearances. A comparative calculation of the efficiency loss for medium- and high-cooling-capacity refrigeration turbines of aircraft air conditioning systems was performed.

RESULTS: Based on the calculations, a conclusion was derived about the predominance of the influence of the radial clearance. The calculations revealed that with a decrease in the clearances between the impeller and the casing in a design with petal-type bearings, a refrigeration turbine of medium cooling capacity (16 kW, 2 impellers) can be expected to experience an increase in efficiency by an average of 2.3%; this expected increase is 0.75% to 1.4% for a high-capacity refrigeration turbine (55 kW, 3 or 4 impellers). Findings indicate that performing works to reduce radial clearances in the designs of turbomachines with petal-type gas-dynamic bearings is necessary.

Keywords

refrigeration turbine / centrifugal expander / efficiency / losses / petal-type gas-dynamic bearings / radial clearance / axial clearance

Cite this article

Download citation ▾
Vitaly S. Nikolaev, Sergey A. Abalakin, Igor V. Tishchenko. Comparison of efficiency losses due to leaks for turbine units of aviation air conditioning systems with petal-type gas-dynamic bearings and ball bearings. Refrigeration Technology, 2022, 111(1): 13-20 DOI:10.17816/RF96964

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D’jachenko JuV, Sparin VA, Chichindaev AV, et al. Sistemy zhizneobespechenija letatel’nyh apparatov. Novosibirsk: Izdatel’stvo NGTU; 2019. 319 p. (In Russ.).

[2]

Дьяченко Ю.В., Спарин В.А., Чичиндаев А.В. и др. Системы жизнеобеспечения летательных аппаратов. Новосибирск: Изд-во НГТУ, 2019. 319 с.

[3]

Ris VF. Centrobezhnye kompressornye mashiny. Moscow, Leningrad: Mashinostroenie; 1964. 336 p.

[4]

Рис В.Ф. Центробежные компрессорные машины. М.; Л. Машиностроение, 1964. 336 с.

[5]

Chistjakov FM. Holodil’nye turboagregaty. Moscow: Mashinostroenie; 1967. 287 p. (In Russ.).

[6]

Чистяков Ф.М. Холодильные турбоагрегаты. М.: Машиностроение, 1967. 287 с.

[7]

Jekkert B. Osevye i centrobezhnye kompressory: Primenenie, teorija, raschet: perevod s nemeckogo. Moscow: Mashgiz; 1959. 679 p. (In Russ.).

[8]

Эккерт Б. Осевые и центробежные компрессоры: Применение, теория, расчет: пер. с нем. М.: Машгиз, 1959. 679 с.

[9]

Epifanova VI. Kompressornye i rasshiritel’nye turbomashiny radial’nogo tipa: uchebnik dlja vuzov. Moscow: Izdatel’stvo MGTU im. N.Je. Baumana; 1998. 623 p. (In Russ.).

[10]

Епифанова В.И. Компрессорные и расширительные турбомашины радиального типа: учебник для вузов. 2-е изд. М.: Изд-во МГТУ им. Н.Э. Баумана, 1998. 623 с.

[11]

Futral SM, Holeski DE. Experimental results of varying the blade-shroud clearance in a 6.02-inch radial-inflow turbine. National Aeronautics and Space Administration, 1970.

[12]

Futral S.M., Holeski D.E. Experimental results of varying the blade-shroud clearance in a 6.02-inch radial-inflow turbine // National Aeronautics and Space Administration. 1970.

[13]

Davydov AB, Kobulashvili ASh, Sherstjuk AN. Raschjot i konstruirovanie turbodetanderov. Moscow: Mashinostroenie; 1987. 232 p. (In Russ.).

[14]

Давыдов А.Б., Кобулашвили А.Ш., Шерстюк А.Н. Расчёт и конструирование турбодетандеров. М.: Машиностроение, 1987. 232 с.

[15]

Dambach R, Hodson HP, Huntsman I. Turbomachinery Committee Best Paper Award: An Experimental Study of Tip Clearance Flow in a Radial Inflow Turbine. J. Turbomach. 1999;121(4):644–650. doi: https://doi.org/10.1115/1.2836716

[16]

Dambach R., Hodson H.P., Huntsman I. Turbomachinery Committee Best Paper Award: An Experimental Study of Tip Clearance Flow in a Radial Inflow Turbine. J. Turbomach. 1998. № 121. С. 644–650. DOI: 10.1115/1.2836716

[17]

Krylov EP, Spunde YaA. About the influence of the clearance between the working blades and housing of a radial turbine on its exponent. Physics, Engineering. 9 June 1967.

[18]

Krylov E.P., Spunde Y.A. About the influence of the clearance between the working blades and housing of a radial turbine on its exponent. // Physics, Engineering. 1967. 9 June.

[19]

Rodgers C. A cycle analysis technique for small gas turbines. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, Vol. 183. SAGE Publications Sage UK, London, England; 1968. p. 37–49.

[20]

Rodgers C. A cycle analysis technique for small gas turbines. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, Vol. 183. SAGE Publications Sage UK, London, England, 1968, p. 37–49.

[21]

Persky R, Sauret E. Loss models for on and off-design performance of radial inflow turbomachinery. Applied Thermal Engineering. 2019;150:1066–1077. doi: 10.1016/j.applthermaleng.2019.01.042

[22]

Persky R., Sauret E. Loss models for on and off-design performance of radial inflow turbomachinery. Applied Thermal Engineering. 2019;150:1066–1077. DOI: 10.1016/j.applthermaleng.2019.01.042

[23]

Cho SK, Lee J, Lee JI. Comparison of loss models for performance prediction of radial inflow turbine. International J. of Fluid Machinery and Systems. 2018;11(1):97–109. doi: 10.5293/ijfms.2018.11.1.097

[24]

Cho S.K., Lee J., Lee J.I. Comparison of loss models for performance prediction of radial inflow turbine. International Journal of Fluid Machinery and Systems. 2018;11(1):97–109. DOI: 10.5293/ijfms.2018.11.1.097

[25]

Moustapha H, Zelesky M, Baines NC, et al. Axial and Radial Turbines. Vol. 2. Concepts ETI, Inc.; 2003. 358 p.

[26]

Moustapha H., Zelesky M., Baines N.C. et al. Axial and Radial Turbines. Vol. 2. Concepts ETI, Inc., 2003. 358 p.

RIGHTS & PERMISSIONS

Nikolaev V.S., Abalakin S.A., Tishchenko I.V.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/