Review of experimental studies on the properties of the ozone-safe refrigerant R1234yf and their mathematical modeling using equations of state

Anna V. Valiakina , Vladimir V. Dolya

Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (4) : 193 -204.

PDF
Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (4) : 193 -204. DOI: 10.17816/RF626383
Reviews
research-article

Review of experimental studies on the properties of the ozone-safe refrigerant R1234yf and their mathematical modeling using equations of state

Author information +
History +
PDF

Abstract

In this review, a set of 44 experimental studies on the thermophysical properties of the promising ozone-safe refrigerant R1234yf are considered. Based on the experimental data, the following properties are found to be necessary when using the refrigerant: saturation pressure, saturated vapor density, p–v–t dependence, isobaric heat capacity, isochoric heat capacity, isobaric heat capacity of an ideal gas, sound velocity, dynamic viscosity, kinematic viscosity, surface tension, and thermal conductivity. In addition, the published measurement errors are specified. Furthermore, a list of computational modeling studies on the thermodynamic properties of the refrigerant R1234yf with an indication of the type of equation of state used is presented. The contributions of Russian scientists to the development of this field are also described. This review increases the efficiency of the information search on the properties of R1234yf and their modeling. Finally, conclusions are drawn regarding the completeness of the information based on experiments and the extent of possibilities of the current modeling methods for the properties of the refrigerant under consideration.

Keywords

R1234yf / ozone-safe refrigerant / hydrofluoroolefin / thermodynamic properties / equation of state / density / heat capacity / thermal conductivity / sound velocity / surface tension

Cite this article

Download citation ▾
Anna V. Valiakina, Vladimir V. Dolya. Review of experimental studies on the properties of the ozone-safe refrigerant R1234yf and their mathematical modeling using equations of state. Refrigeration Technology, 2021, 110(4): 193-204 DOI:10.17816/RF626383

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bell IH, Wronski J, Quoilin S, et al. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp // Industrial & Engineering Chemistry Research. 2014;53(6):2498–2508. doi: 10.1021/ie4033999

[2]

Bell I.H., Wronski J., Quoilin S., et al. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp // Industrial & Engineering Chemistry Research. 2014. Vol. 53, N 6. P. 2498–2508. doi: 10.1021/ie4033999

[3]

Lemmon EW, Bell IH, Huber ML, et al. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, Standard Reference Data Program. Gaithersburg: National Institute of Standards and Technology, 2018. doi: 10.18434/T4/1502528

[4]

Lemmon E.W., Bell I.H., Huber M.L., et al. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, Standard Reference Data Program. Gaithersburg: National Institute of Standards and Technology, 2018. doi: 10.18434/T4/1502528

[5]

Hulse R, Singh R, Pham H. In: Proceedings of the 3rd IIR Conference on Thermophysical Properties and Transfer Processes of Refrigeration, CO, USA. Boulder: IIR, 2009:60.

[6]

Hulse R., Singh R., Pham H. In: Proceedings of the 3rd IIR Conference on Thermophysical Properties and Transfer Processes of Refrigeration, Boulder, CO, USA. Boulder: IIR, 2009. P. 60.

[7]

Kano Y, Kayukawa Y, Fujii K. Measurement of Critical Point for Novel Hydrofluoro-Olefin Refrigerants. In: Proceedings of the 19th Symposium on Environmental Engineering, Japan. Naha; 2009:423.

[8]

Kano Y., Kayukawa Y., Fujii K. Measurement of Critical Point for Novel Hydrofluoro-Olefin Refrigerants. In: Proceedings of the 19th Symposium on Environmental Engineering, Naha, Japan. Naha, 2009. P. 423.

[9]

Di Nicola G, Polonara F, Santori G. Saturated Pressure Measurements of 2,3,3,3-Tetrafluoroprop-1-ene (HFO-1234yf). Journal of Chemical & Engineering Data. 2010;55(1):201–204. doi: 10.1021/je900306v

[10]

Di Nicola G., Polonara F., Santori G. Saturated Pressure Measurements of 2,3,3,3-Tetrafluoroprop-1-ene (HFO-1234yf) // Journal of Chemical & Engineering Data. 2010. Vol. 55, N 1. P. 201–204. doi: 10.1021/je900306v

[11]

Tanaka K, Higashi Y. Thermodynamic Properties of HFO-1234yf (2,3,3,3-Tetrafluoropropene). International Journal of Refrigeration. 2010;33(3):474–479. doi: 10.1016/j.ijrefrig.2009.10.003

[12]

Tanaka K., Higashi Y. Thermodynamic Properties of HFO-1234yf (2,3,3,3-Tetrafluoropropene) // International Journal of Refrigeration. 2010. Vol. 33, N 3. P.474–479. doi: 10.1016/j.ijrefrig.2009.10.003

[13]

Richter M, McLinden MO, Lemmon EW, Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p-ρ-T Measurements and an Equation of State. Journal of Chemical & Engineering Data. 2011;56(7):3254–3264. doi: 10.1021/je200369m

[14]

Richter M., McLinde M.O., Lemmon E.W. Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p-ρ-T Measurements and an Equation of State // Journal of Chemical & Engineering Data. 2011. Vol. 56, N 7. P. 3254–3264. doi: 10.1021/je200369m

[15]

Fedele L, Bobbo S, Groppo F, et al. Saturated Pressure Measurements of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) for Reduced Temperatures Ranging from 0.67 to 0.93. Journal of Chemical & Engineering Data. 2011;56(5):2608–2612. doi: 10.1021/je2000952

[16]

Fedele L., Bobbo S., Groppo, et al. Saturated Pressure Measurements of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) for Reduced Temperatures Ranging from 0.67 to 0.93 // Journal of Chemical & Engineering Data. 2011. Vol. 56, N 5. P.2608–2612. doi: 10.1021/je2000952

[17]

Hu P, Chen L-X, Chen Z-S. Vapor–Liquid Equilibria for the 1,1,1,2-Tetrafluoroethane (HFC-134a)+1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) and 1,1,1-Trifluoroethane (HFC-143a)+2,3,3,3-tTetrafluoroprop-1-ene (HFO-1234yf) Systems. Fluid Phase Equilibria. 2013;360:293–297. doi: 10.1016/j.fluid.2013.09.056

[18]

Hu P., Chen L.-X., Chen, Z.-S. Vapor–Liquid Equilibria for the 1,1,1,2-Tetrafluoroethane (HFC-134a)+1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) and 1,1,1-Trifluoroethane (HFC-143a)+2,3,3,3-tTetrafluoroprop-1-ene (HFO-1234yf) Systems // Fluid Phase Equilibria. 2013. Vol. 360. P. 293–297. doi: 10.1016/j.fluid.2013.09.056

[19]

Kamiaka T, Dang C, Hihara E. Vapor-Liquid Equilibrium Measurements for Binary Mixtures of R1234yf with R32, R125, and R134a. International Journal of Refrigeration. 2013;36(3):965–971. doi: 10.1016/j.ijrefrig.2012.08.016

[20]

Kamiaka T., Dang C., Hihara E. Vapor-Liquid Equilibrium Measurements for Binary Mixtures of R1234yf with R32, R125, and R134a // International Journal of Refrigeration. 2013. Vol. 36, N 3. P. 965–971. doi: 10.1016/j.ijrefrig.2012.08.016

[21]

Yang Z, Kou L, Mao W, et al. Experimental study of saturated pressure measurements for 2,3,3,3- tetrafluoropropene (HFO-1234yf) and 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb). J. Chem. Eng. Data. 2014;59:157−160. doi: 10.1021/je400970y

[22]

Yang Z., Kou L., Mao W., et al. Experimental study of saturated pressure measurements for 2,3,3,3- tetrafluoropropene (HFO-1234yf) and 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) // J. Chem. Eng. Data 2014. Vol. 59. P. 157−160. doi: 10.1021/je400970y

[23]

Chen L-X, Hu P, ZhuW-B, et al. Vapor–Liquid Equilibria of Fluoroethane (HFC-161)+2,3,3,3-Tetrafluoroprop-1-ene (HFO-1234yf). Fluid Phase Equilibria. 2015;392:19–23. doi: 10.1016/j.fluid.2015.02.014

[24]

Chen L.-X., Hu P., Zhu W.-B., et al. Vapor–Liquid Equilibria of Fluoroethane (HFC-161)+2,3,3,3-Tetrafluoroprop-1-ene (HFO-1234yf) // Fluid Phase Equilibria. 2015. Vol. 392. P. 19–23. doi: 10.1016/j.fluid.2015.02.014

[25]

Madani H, Valtz A, Zhang F, et al. Isothermal Vapor–Liquid Equilibrium Data for the Trifluoromethane (R23) + 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) System at Temperatures from 254 to 348 K. Fluid Phase Equilibria. 2016;415:158–165.doi: 10.1016/j.fluid.2016.02.005

[26]

Madani H., Valtz A., Zhang F., et al. Isothermal Vapor–Liquid Equilibrium Data for the Trifluoromethane (R23) + 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) System at Temperatures from 254 to 348 K // Fluid Phase Equilibria. 2016. Vol. 415. P. 158–165. doi: 10.1016/j.fluid.2016.02.005

[27]

Yang Z-Q, Kou L-G, Han S, et al. Vapor-Liquid Equilibria of 2,3,3,3-Tetrafluoropropene (HFO-1234yf) + 1,1,1,2,2-Pentafluoropropane (HFC-245cb) System. Fluid Phase Equilibria. 2016;427:390–393. doi: 10.1016/j.fluid.2016.07.031

[28]

Yang Z.-Q., Kou L.-G., Han S., et al. Vapor-Liquid Equilibria of 2,3,3,3-Tetrafluoropropene (HFO-1234yf) + 1,1,1,2,2-Pentafluoropropane (HFC-245cb) System // Fluid Phase Equilibria. 2016. Vol. 427. P. 390–393. doi: 10.1016/j.fluid.2016.07.031

[29]

Kochenburger T, Gomse D, Tratschitt I, et al. Vapor-Liquid and Vapor-Liquid-Liquid Equilibrium Measurements and Correlation of the Binary Mixtures 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) + (Tetrafluoromethane (R14), Trifluoromethane (R23), Octafluoropropane (R218), Nitrogen (R728) and Argon (R740)) and ethane (R170) + trifluoromethane (R23). Fluid Phase Equilibria. 2017;450:13–23. doi: 10.1016/j.fluid.2017.07.002

[30]

Kochenburger T., Gomse D., Tratschitt I., et al. Vapor-Liquid and Vapor-Liquid-Liquid Equilibrium Measurements and Correlation of the Binary Mixtures 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) + (Tetrafluoromethane (R14), Trifluoromethane (R23), Octafluoropropane (R218), Nitrogen (R728) and Argon (R740)) and ethane (R170) + trifluoromethane (R23) // Fluid Phase Equilibria. 2017. Vol. 450. P. 13–23. doi: 10.1016/j.fluid.2017.07.002

[31]

Zhong Q, Dong X, Zhao Y, et al. Measurements of isothermal vapour–liquid equilibrium for the 2,3,3,3-tetrafluoroprop-1-ene + propane system at temperatures from 253.150 to 293.150 K. Int. J. Refrig. 2017;81:26-32. doi: 10.1016/j.ijrefrig.2017.05.016

[32]

Zhong Q., Dong X., Zhao Y., et al. Measurements of isothermal vapour–liquid equilibrium for the 2,3,3,3-tetrafluoroprop-1-ene + propane system at temperatures from 253.150 to 293.150 K // Int. J. Refrig. 2017. Vol. 81. P. 26-32. doi: 10.1016/j.ijrefrig.2017.05.016

[33]

Hu P, Zhang N, Chen L-X, et al. Vapor–Liquid Equilibrium Measurements for 2,3,3,3-Tetrafluoroprop-1-ene + Butane at Temperatures from 283.15 to 323.15 K. Journal of Chemical & Engineering Data. 2018;63(5):1507–1512. doi: 10.1021/acs.jced.7b01073

[34]

Hu P., Zhang N., Chen L.-X., Cai X.-D. Vapor–Liquid Equilibrium Measurements for 2,3,3,3-Tetrafluoroprop-1-ene + Butane at Temperatures from 283.15 to 323.15 K // Journal of Chemical & Engineering Data. 2018. Vol. 63, N 5. P. 1507–1512. doi: 10.1021/acs.jced.7b01073

[35]

Valtz A, Abbadi JE, Coquelet C, et al. Experimental measurements and modelling of vapour-liquid equilibrium of 2,3,3,3-tetrafluoropropene (R-1234yf) + 1,1,1,2,2-pentafluoropropane (R-245cb) system. International Journal of Refrigeration. 2019;107:315–325. doi: 10.1016/j.ijrefrig.2019.07.024

[36]

Valtz A., Abbadi J.E., Coquelet C., et al. Experimental measurements and modelling of vapour-liquid equilibrium of 2,3,3,3-tetrafluoropropene (R-1234yf) + 1,1,1,2,2-pentafluoropropane (R-245cb) system // International Journal of Refrigeration. 2019. Vol. 107. P. 315–325. doi: 10.1016/j.ijrefrig.2019.07.024

[37]

Yin J, Zhao G, Ma S. Experimental measurements of saturated vapor pressure and gaseous pvT property for 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf). International Journal of Refrigeration. 2019;107:183–190. doi: 10.1016/j.ijrefrig.2019.08.008

[38]

Yin J., Zhao G., Ma S. Experimental measurements of saturated vapor pressure and gaseous pvT property for 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) // International Journal of Refrigeration 2019. Vol. 107. P. 183–190. doi: 10.1016/j.ijrefrig.2019.08.008

[39]

Yoshitake M, Matsuo S, Sotani T. Density and Speed of Sound Measurements of HFO1234yf. In: Proceedings of the 30th Japan Symposium on Thermophysical Properties. Yonezawa, Japan. 2009:353–355 (in Japanese).

[40]

Yoshitake M., Matsuo S., Sotani T. Density and Speed of Sound Measurements of HFO1234yf. In: Proceedings of the 30th Japan Symposium on Thermophysical Properties. Yonezawa, Japan. 2009. P.353–355. (in Japanese).

[41]

Kayukawa Y, Kano Y, Fujii K. In: Proceedings of the 2009 Symposium on Environmental Engineering, Okinawa, Japan. 2009:406 (in Japanese).

[42]

Kayukawa Y., Kano Y., Fujii K. In: Proceedings of the 2009 Symposium on Environmental Engineering, Okinawa, Japan. 2009. P. 406. (in Japanese).

[43]

Di Nicola C., Di Nicola G., Pacetti M, et al. P − V − T Behavior of 2,3,3,3- Tetrafluoroprop-1-ene (HFO-1234yf) in the Vapor Phase from (243 to 373) K. Journal of Chemical & Engineering Data. 2010;55(9):3302–3306. doi: 10.1021/je100102q

[44]

Di Nicola C., Di Nicola G., Pacetti M., et al. P − V − T Behavior of 2,3,3,3- Tetrafluoroprop-1-ene (HFO-1234yf) in the Vapor Phase from (243 to 373) K // Journal of Chemical & Engineering Data. 2010. Vol. 55, N 9. P. 3302–3306. doi: 10.1021/je100102q

[45]

Tanaka K, Higashi Y, Akasaka R. Measurements of the Isobaric Specific Heat Capacity and Density for HFO-1234yf in the Liquid State. Journal of Chemical & Engineering Data. 2010;55(8):901–903. doi: 10.1021/je900515a

[46]

Tanaka K., Higashi Y., Akasaka R. Measurements of the Isobaric Specific Heat Capacity and Density for HFO-1234yf in the Liquid State // Journal of Chemical & Engineering Data. 2010. Vol. 55, N 8. P. 901–903. doi: 10.1021/je900515a

[47]

Tanaka K, Higashi Y. PρT Property for HFO1234yf in the Gaseous Phase. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers. 2011;28(1):51–61 (in Japanese)

[48]

Tanaka K, Higashi Y. PT Property for HFO1234yf in the Gaseous Phase // Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers. 2011. Vol. 28(1). P. 51–61 (in Japanese)

[49]

Fedele L, Brown JS, Colla L, et al. Compressed Liquid Density Measurements for 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf). Journal of Chemical & Engineering Data. 2011;57(2):482–489. doi: 10.1021/je201030g

[50]

Fedele L., Brown J.S., Colla L., et al. Compressed Liquid Density Measurements for 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) // Journal of Chemical & Engineering Data. 2011. Vol. 57, N 2. P. 482–489. doi: 10.1021/je201030g

[51]

Klomfar J, Součková M, Pátek J. Liquid-Phase p–ρ–T Data for 2,3,3,3-Tetrafluoroprop-1-ene (R-1234yf) and 1,1,2,3,3,3-Hexafluoroprop-1-ene (R-1216) at Temperatures from (208 to 353) K under Pressures up to 40 MPa. Journal of Chemical & Engineering Data. 2012;57(11):3283–3289. doi: 10.1021/je3009304

[52]

Klomfar J., Součková M., Pátek J. Liquid-Phase p–ρ–T Data for 2,3,3,3-Tetrafluoroprop-1-ene (R-1234yf) and 1,1,2,3,3,3-Hexafluoroprop-1-ene (R-1216) at Temperatures from (208 to 353) K under Pressures up to 40 MPa // Journal of Chemical & Engineering Data. 2012. Vol. 57, N 11. P. 3283–3289. doi: 10.1021/je3009304

[53]

Qiu G, Meng X, Wu J. Density measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)). The Journal of Chemical Thermodynamics. 2013;60:150–8. doi: 10.1016/j.jct.2013.01.006

[54]

Qiu G., Meng X., Wu J. Density measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) // The Journal of Chemical Thermodynamics. 2013. Vol. 60. P.150–158. doi: 10.1016/j.jct.2013.01.006

[55]

Hu P, Cai X-D, Chen L-X, et al. pvT Properties of 2,3,3,3-Tetrafluoroprop-1-ene (HFO-1234yf) in the Gaseous Phase. Journal of Chemical & Engineering Data. 2017;62(10):3353–3359. doi: 10.1021/acs.jced.7b00427

[56]

Hu P., Cai X.-D., Chen L.-X., et al. pvT Properties of 2,3,3,3-Tetrafluoroprop-1-ene (HFO-1234yf) in the Gaseous Phase // Journal of Chemical & Engineering Data. 2017. Vol. 62, N 10. P. 3353–3359. doi: 10.1021/acs.jced.7b00427

[57]

Gao N, Jiang Y, Wu J, He Y, Chen G. Measurements of the isobaric heat capacity of R1234yf in liquid phase at temperatures from 305K to 355K and pressures up to 5MPa. Fluid Phase Equilibria. 2014;376:64–68. doi: 10.1016/j.fluid.2014.05.029

[58]

Gao N., Jiang Y., Wu J., He Y., et al. Measurements of the isobaric heat capacity of R1234yf in liquid phase at temperatures from 305K to 355K and pressures up to 5MPa // Fluid Phase Equilibria. 2014. Vol. 376. P. 64–68. doi: 10.1016/j.fluid.2014.05.029

[59]

Liu Y, Zhao X, Lv S, He H. Isobaric Heat Capacity Measurements for R1234yf from 303 to 373 K and Pressures up to 12 MPa. Journal of Chemical & Engineering Data. 2017;62(3):1119–1124. doi: 10.1021/acs.jced.6b00959

[60]

Liu Y., Zhao X., Lv S., et al. Isobaric Heat Capacity Measurements for R1234yf from 303 to 373 K and Pressures up to 12 MPa // Journal of Chemical & Engineering Data. 2017. Vol. 62, N 3. P. 1119–1124. doi: 10.1021/acs.jced.6b00959

[61]

Al Ghafri SZS, Rowland D, Akhfash M, et al. Thermodynamic properties of hydrofluoroolefin (R1234yf and R1234ze(E)) refrigerant mixtures: Density, vapour-liquid equilibrium, and heat capacity data and modelling. International Journal of Refrigeration. 2019;98:249–260. doi: 10.1016/j.ijrefrig.2018.10.027

[62]

Al Ghafri S.Z.S., Rowland D., Akhfash M., et al. Thermodynamic properties of hydrofluoroolefin (R1234yf and R1234ze(E)) refrigerant mixtures: Density, vapour-liquid equilibrium, and heat capacity data and modelling // International Journal of Refrigeration. 2019. Vol. 98. P. 249–260. doi: 10.1016/j.ijrefrig.2018.10.027

[63]

Lukawski MZ, Ishmael MPE, Tester JW. Isobaric Heat Capacity Measurements of Supercritical R1234yf. Journal of Chemical & Engineering Data. 2018;63(2):463–469. doi: 10.1021/acs.jced.7b00946

[64]

Lukawski M.Z., Ishmael M.P.E., Tester J.W. Isobaric Heat Capacity Measurements of Supercritical R1234yf // Journal of Chemical & Engineering Data. 2018. Vol. 63, N 2. P. 463–469. doi: 10.1021/acs.jced.7b00946

[65]

Zhong Q, Dong X, Zhao Y, et al. Adiabatic calorimeter for isochoric specific heat capacity measurements and experimental data of compressed liquid R1234yf. The Journal of Chemical Thermodynamics. 2018;125:86–92. doi: 10.1016/j.jct.2018.05.022

[66]

Zhong Q., Dong X., Zhao Y., et al. Adiabatic calorimeter for isochoric specific heat capacity measurements and experimental data of compressed liquid R1234yf // The Journal of Chemical Thermodynamics. 2018. N 125. P. 86–92. doi: 10.1016/j.jct.2018.05.022

[67]

Kano Y, Kayukawa Y, Fujii K, Sato H. Ideal-Gas Heat Capacity for 2,3,3,3-Tetrafluoropropene (HFO-1234yf) Determined from Speed-of-Sound Measurements. International Journal of Thermophysics. 2010;31(11–12):2051–2058. doi: 10.1007/s10765-010-0885-7

[68]

Kano Y., Kayukawa Y., Fujii K., et al. Ideal-Gas Heat Capacity for 2,3,3,3-Tetrafluoropropene (HFO-1234yf) Determined from Speed-of-Sound Measurements // International Journal of Thermophysics. 2010. Vol. 31, N 11–12. P. 2051–2058. doi: 10.1007/s10765-010-0885-7

[69]

Lago S, Albo PAG, Brignolo S. Speed of Sound Results in 2,3,3,3-Tetrafluoropropene (R-1234yf) and trans-1,3,3,3-Tetrafluoropropene (R-1234ze(E)) in the Temperature Range of (260 to 360) K. Journal of Chemical & Engineering Data. 2010;56(1):161–163. doi: 10.1021/je100896n

[70]

Lago S., Albo P.A.G., Brignolo S. Speed of Sound Results in 2,3,3,3-Tetrafluoropropene (R-1234yf) and trans-1,3,3,3-Tetrafluoropropene (R-1234ze(E)) in the Temperature Range of (260 to 360) K // Journal of Chemical & Engineering Data. 2010. Vol. 56, N 1. P. 161–163. doi: 10.1021/je100896n

[71]

Yamaguchi S, Matsuo S, Sotani T. Viscosity measurement of HFO1234yf by means of rolling-ball method. In: 30th Japan Symposium on Thermophysical Properties. Yonezawa, Japan; 2009.

[72]

Yamaguchi S., Matsuo S., Sotani T. Viscosity measurement of HFO1234yf by means of rolling-ball method. In: 30th Japan Symposium on Thermophysical Properties, Yonezawa, Japan. 2009.

[73]

Laesecke A, Cousins DS. Sealed Gravitational Capillary Viscometry of Dimethyl Ether and Two Next-Generation Alternative Refrigerants. Journal of Research of the National Institute of Standards and Technology. 2012;117(0):231-256. doi: 10.6028/jres.117.014

[74]

Laesecke A., Cousins D.S. Sealed Gravitational Capillary Viscometry of Dimethyl Ether and Two Next-Generation Alternative Refrigerants // Journal of Research of the National Institute of Standards and Technology. 2012. Vol. 117, N 0. P. 231–256. doi: 10.6028/jres.117.014

[75]

Meng X, Qiu G, Wu J, et al. Viscosity measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)). The Journal of Chemical Thermodynamics. 2013;63:24–30. doi: 10.1016/j.jct.2013.03.013

[76]

Meng X., Qiu G., Wu J., et al. Viscosity measurements for 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) // The Journal of Chemical Thermodynamics. 2013. N 63. P. 24–30. doi: 10.1016/j.jct.2013.03.013

[77]

Dang Y, Kamiaka T, Dang C, et al. Liquid viscosity of low-GWP refrigerant mixtures (R32+R1234yf) and (R125+R1234yf). The Journal of Chemical Thermodynamics. 2015;89:183–188. doi: 10.1016/j.jct.2015.05.009

[78]

Dang Y., Kamiaka T., Dang C., et al. Liquid viscosity of low-GWP refrigerant mixtures (R32+R1234yf) and (R125+R1234yf) // The Journal of Chemical Thermodynamics. 2015. Vol. 89. P. 183–188. doi: 10.1016/j.jct.2015.05.009

[79]

Dang Y, Kim HS, Dang C, et al. Measurement of vapor viscosity of R1234yf and its binary mixtures with R32, R125. International Journal of Refrigeration. 2015;58:131–136. doi: 10.1016/j.ijrefrig.2015.06.010

[80]

Dang Y., Kim H.S., Dang C., et al. Measurement of vapor viscosity of R1234yf and its binary mixtures with R32, R125 // International Journal of Refrigeration. 2015. N 58. P. 131–136. doi: 10.1016/j.ijrefrig.2015.06.010

[81]

Zhao G, Bi S, Fröba AP, et al. Liquid Viscosity and Surface Tension of R1234yf and R1234ze Under Saturation Conditions by Surface Light Scattering. Journal of Chemical & Engineering Data. 2014;59(4):1366–1371. doi: 10.1021/je5001457

[82]

Zhao G., Bi S., Fröba A.P., et al. Liquid Viscosity and Surface Tension of R1234yf and R1234ze Under Saturation Conditions by Surface Light Scattering // Journal of Chemical & Engineering Data. 2014. Vol. 59, N 4. P. 1366–1371. doi: 10.1021/je5001457

[83]

Zhao X, Duan W, Zeng X, et al. Measurements of Surface Tension of R1234yf and R1234ze(E). Journal of Chemical & Engineering Data. 2017;63(1):21–26. doi: 10.1021/acs.jced.7b00543

[84]

Zhao X., Duan W., Zeng X., et al. Measurements of Surface Tension of R1234yf and R1234ze(E) // Journal of Chemical & Engineering Data. 2017. Vol. 63, No.1. P. 21–26. doi: 10.1021/acs.jced.7b00543

[85]

Perkins RA, Huber ML. Measurement and Correlation of the Thermal Conductivity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)). Journal of Chemical & Engineering Data. 2011;56(12):4868–4874. doi: 10.1021/je200811n

[86]

Perkins R.A., Huber M.L. Measurement and Correlation of the Thermal Conductivity of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)) // Journal of Chemical & Engineering Data. 2011. Vol. 56, No.12. P. 4868–4874. doi: 10.1021/je200811n

[87]

Miyara A., Fukuda R., Tsubaki K. Thermal conductivity of saturated liquid of R1234ze (E)+ R32 and R1234yf+ R32 mixtures. Trans. Jpn. Soc. Refrig. Air Cond. Eng. 2011;28:435-443.

[88]

Miyara A., Fukuda R., Tsubaki K. Thermal conductivity of saturated liquid of R1234ze (E)+ R32 and R1234yf+ R32 mixtures // Trans. Jpn. Soc. Refrig. Air Cond. Eng. 2011. No.28. P. 435-443.

[89]

Akasaka R. New Fundamental Equations of State with a Common Functional Form for 2,3,3,3-Tetrafluoropropene (R-1234yf) and trans-1,3,3,3-Tetrafluoropropene (R-1234ze(E)). International Journal of Thermophysics. 2011;32(6):1125–1147. doi: 10.1007/s10765-011-0992-0

[90]

Akasaka R. New Fundamental Equations of State with a Common Functional Form for 2,3,3,3-Tetrafluoropropene (R-1234yf) and trans-1,3,3,3-Tetrafluoropropene (R-1234ze(E)) // International Journal of Thermophysics. 2011. Vol. 32, No.6. P. 1125–1147. doi: 10.1007/s10765-011-0992-0

[91]

Kayukawa Y, Sakoda N, Akasaka R. Trends in research on thermophysical properties of olefinic low-GWP refrigerants. Proceedings of the Japanese Society for Refrigeration and Air Conditioning. 2020;37(1):1-44. doi: 10.11322/tjsrae.20-08R

[92]

Kayukawa Y, Sakoda N, Akasaka R. Trends in research on thermophysical properties of olefinic low-GWP refrigerants. In: Proceedings of the Japanese Society for Refrigeration and Air Conditioning. 2020;37(1):1–44. doi: 10.11322/tjsrae.20-08R

[93]

Nair V. HFO refrigerants: A review of present status and future prospects. International Journal of Refrigeration. 2021;122:156–170. doi: 10.1016/j.ijrefrig.2020.10.039

[94]

Nair V. HFO refrigerants: A review of present status and future prospects // International Journal of Refrigeration. 2021. No.122. P. 156–170. doi: 10.1016/j.ijrefrig.2020.10.039

[95]

Huber ML, Assael MJ. Correlations for the viscosity of 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)). International Journal of Refrigeration. 2016;71:39–45. doi: 10.1016/j.ijrefrig.2016.08.007

[96]

Huber M.L, Assael M.J. Correlations for the viscosity of 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) // International Journal of Refrigeration. 2016. No.71. P. 39–45. doi: 10.1016/j.ijrefrig.2016.08.007

[97]

Brown JS, Zilio C, Cavallini A. Thermodynamic properties of eight fluorinated olefins. International Journal of Refrigeration. 2010;33(2):235–241. doi: 10.1016/j.ijrefrig.2009.04.005

[98]

Brown J.S., Zilio C., Cavallini A. Thermodynamic properties of eight fluorinated olefins // International Journal of Refrigeration. 2010. Vol. 33, No.2. P. 235–241. doi: 10.1016/j.ijrefrig.2009.04.005

[99]

Akasaka R, Tanaka K, Higashi Y. Thermodynamic property modeling for 2,3,3,3-tetrafluoropropene (HFO-1234yf). International Journal of Refrigeration. 2010;33(1):52–60. doi: 10.1016/j.ijrefrig.2009.09.004

[100]

Akasaka R., Tanaka K., Higashi Y. Thermodynamic property modeling for 2,3,3,3-tetrafluoropropene (HFO-1234yf) // International Journal of Refrigeration. 2010. Vol. 33, No.1. P. 52–60. doi: 10.1016/j.ijrefrig.2009.09.004

[101]

Leck T. Evaluation of HFO-1234yf as a Replacement for R-134a in Refrigeration and Air Conditioning Applications. In: Proceedings 3rd IIR Conference on Thermophysical Properties & Transport Processes of Refrigerants, Boulder, Colorado. 2010:23-26.

[102]

Leck T. Evaluation of HFO-1234yf as a Replacement for R-134a in Refrigeration and Air Conditioning Applications. In: Proceedings 3rd IIR Conference on Thermophysical Properties & Transport Processes of Refrigerants, Boulder, Colorado. 2010. P. 23–26.

[103]

Hulse R, Singh R, Pham H. Physical Properties of HFO-1234yf. Evaluation of HFO-1234yf as a Replacement for R-134a in Refrigeration and Air Conditioning Applications. In: Proceedings 3rd IIR Conference on Thermophysical Properties & Transport Processes of Refrigerants, Boulder, Colorado; 2010.

[104]

Hulse R., Singh R., Pham H. Physical Properties of HFO-1234yf. Evaluation of HFO-1234yf as a Replacement for R-134a in Refrigeration and Air Conditioning Applications. In: Proceedings 3rd IIR Conference on Thermophysical Properties & Transport Processes of Refrigerants, Boulder, Colorado. 2010.

[105]

Raabe G, Maginn EJ. A Force Field for 3,3,3-Fluoro-1-propenes, Including HFO-1234yf. Journal of Physical Chemistry B. 2010;114(31):10133–10142. doi: 10.1021/jp102534z

[106]

Raabe G., Maginn E.J. A Force Field for 3,3,3-Fluoro-1-propenes, Including HFO-1234yf // Journal of Physical Chemistry B. 2010. Vol. 114, N 31. P. 10133–10142. doi: 10.1021/jp102534z

[107]

Lai NA, Vrabec J, Raabe G, et al. Description of HFO-1234yf with BACKONE equation of state. Fluid Phase Equilibria. 2011;305(2):204–211. doi: 10.1016/j.fluid.2011.04.005

[108]

Lai N.A., Vrabec J., Raabe G., et al. Description of HFO-1234yf with BACKONE equation of state // Fluid Phase Equilibria. 2011. Vol. 305, No.2. P. 204–211. doi: 10.1016/j.fluid.2011.04.005

[109]

Agrawal A, Cornelio AA, Limperich D. Investigation of Cubic EOS Models for HFO-1234yf Refrigerant Used In Automotive application. International Refrigeration and Air Conditioning Conference. Paper 1232. 2012

[110]

Agrawal A., Cornelio A.A., Limperich D. Investigation of cubic EOS models for HFO-1234yf refrigerant used in automotive application. In: International Refrigeration and Air Conditioning Conference. 2012. P. 1232.

[111]

Fouad WA, Vega LF. Next generation of low global warming potential refrigerants: Thermodynamic properties molecular modeling. AIChE Journal. 2017;64(1):250–262. doi: 10.1002/aic.15859

[112]

Fouad W.A., Vega L.F. Next generation of low global warming potential refrigerants: Thermodynamic properties molecular modeling // AIChE Journal. 2017. Vol. 64, No.1. P. 250–262. doi: 10.1002/aic.15859

[113]

Rykov VA, Rykov SV, Sverdlov AV. Fundamental equation of state for R1234yf. Journal of Physics: Conference Series. 2019;1385(1):012013. doi: 10.1088/1742-6596/1385/1/012013

[114]

Rykov V.A., Rykov S.V., Sverdlov A.V. Fundamental equation of state for R1234yf // Journal of Physics: Conference Series. 2019. Vol. 1385, No.1. 012013. doi: 10.1088/1742-6596/1385/1/012013

[115]

Kolobaev VA, Rykov SV, Kudryavtseva IV, et al. Methodology for constructing the equation of state and thermodynamic tables for a new generation refrigerant. Measuring equipment. 2021;2:9–15. (In Russ). doi: 10.32446/0368-1025it.2021-2-9-15

[116]

Колобаев В.А., Рыков С.В., Кудрявцева И.В., и др. Методика построения уравнения состояния и термодинамических таблиц для хладагента нового поколения // Измерительная техника. 2021. № 2. С. 9–15. doi: 10.32446/0368-1025it.2021-2-9-15

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/