lateSearching for the most energy-efficient composition of a mixture of dimethyl ether and carbon dioxide as an air conditioning system refrigerantr

Anton A. Zharov , Anastasiya A. Kazakova , Mikael A. Grigoryan , Nikita A. Kovalchuk

Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (4) : 205 -214.

PDF
Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (4) : 205 -214. DOI: 10.17816/RF551801
Original Study Articles
research-article

lateSearching for the most energy-efficient composition of a mixture of dimethyl ether and carbon dioxide as an air conditioning system refrigerantr

Author information +
History +
PDF

Abstract

BACKGROUND: Carbon dioxide can be an alternative refrigerant for vapor compression refrigeration systems, particularly air conditioning systems (ACSs). However, its use suffers from the increased pressure in the refrigeration circuit. To solve this, for its reduction, a mixture of CO2 with a substance that has significantly lower pressures under the same conditions can be developed, for example, dimethyl ether (DME), which has zero GWP and ODP, is inexpensive and readily available. The study of DME, in particular, was conducted by the Department E4 “Refrigeration and Cryogenic Engineering, Air Conditioning and Life Support Systems” of N.E. Bauman Moscow State Technical University. DME is moderately toxic and flammable.

AIM: This study aims to investigate the possible use of a mixture of DME and carbon dioxide for energy-efficient application in ACSs using commercially available compressors for R410A.

METHODS: Comparative calculation analysis of the characteristics of a simple one-stage vapor compression cycle was performed using R410A and a mixture of DME and CO2 using the calculation packages Mathcad 15, Aspen HYSYS v. 10, SOLKANE8, and REFPROP.

RESULTS: 1. The cycle on pure DME is the most effective in terms of the coefficient of performance: ε = 5.63 at an ambient air temperature of 26°C, ε = 3.07 at 40°C. 2. It is necessary to consider the influence of temperature glides, the average value of which ranges from 10°C to 30°C depending on the concentration of components. 3. At DME/CO2 ratios of 40/60% and 60/40% (in mole fraction), the discharge pressure corresponds to the discharge pressure in the R410A cycle, with 39.62 bar at an ambient temperature of 26°C and 37 bar at 40°C, respectively.

CONCLUSIONS: An environmentally friendly mixture of DME and CO2 with low GWP and zero ODP is developed. An increase in the percentage of DME in the mixture increases the coefficient of performance and reduces the pressure range, and at the same time, significant temperature glides arise, which affects the installation efficiency, namely, the transition to a cycle with a receiver tank, i.e., with a recuperative heat exchanger between the fluorinated refrigerant flow leaving the evaporator and the fluorinated refrigerant flow leaving the condenser. The developed mixture is less efficient than the R410A refrigerant in terms of the coefficient of performance and discharge pressure. However, it is possible to further consider a mixture of DME and CO2 with concentrations of 40% and 60%, respectively, as a replacement for the R410 refrigerant because there is a correspondence of discharge pressures for serial compressors (about 40 bar); however, it is necessary to keep in mind the flammability risk of the mixture.

Keywords

laterair conditioning system / environmentally friendly working substance / energy efficient and environmentally friendly air conditioning system / a mixture of carbon dioxide and dimethyl ether as a refrigerant for an air conditioning system

Cite this article

Download citation ▾
Anton A. Zharov, Anastasiya A. Kazakova, Mikael A. Grigoryan, Nikita A. Kovalchuk. lateSearching for the most energy-efficient composition of a mixture of dimethyl ether and carbon dioxide as an air conditioning system refrigerantr. Refrigeration Technology, 2021, 110(4): 205-214 DOI:10.17816/RF551801

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mäder JA, Staehelin J, Peter T, et al. Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer. Atmos. Chem. Phys. 2010;10:12161–12171. doi: 10.5194/acp-10-12161-2010

[2]

Mäder J.A., Staehelin J., Peter T., et al. Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer // Atmos. Chem. Phys. 2010. Vol. 10. P. 12161–12171. doi: 10.5194/acp-10-12161-2010

[3]

Molina M, Zaelke D, Sarma KM, et al. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions. Proceedings of the National Academy of Sciences. 2009;106(49):20616–20621. doi: 10.1073/pnas.0902568106

[4]

Molina M., Zaelke D., Sarma K.M., et al. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions // Proceedings of the National Academy of Sciences. 2009. Vol. 106, N. 49. P. 20616–20621. doi: 10.1073/pnas.0902568106

[5]

Grunewald N, Martinez-Zarzoso I. Did the Kyoto Protocol fail? An evaluation of the effect of the Kyoto Protocol on CO2 emission. Environment and Development Economics. 2015;21(01):1–22. doi: 10.1017/s1355770x15000091

[6]

Grunewald N., Martinez-Zarzoso I. Did the Kyoto Protocol fail? An evaluation of the effect of the Kyoto Protocol on CO2 emission // Environment and Development Economics. 2015. Vol. 21, N. 01. 1–22. doi: 10.1017/s1355770x15000091

[7]

Aichele R, Felbermayr G. The Effect of the Kyoto Protocol on Carbon Emissions. Journal of Policy Analysis and Management. 2013;32(4):731–757. doi: 10.1002/pam.21720

[8]

Aichele R., Felbermayr G. The Effect of the Kyoto Protocol on Carbon Emissions // Journal of Policy Analysis and Management. 2013. Vol. 32, N. 4. 731–757. doi: 10.1002/pam.21720

[9]

The Montreal protocol on substances that deplete the ozone layer. Nairobi: Ozone Secretariat United Nations Environment Programme; 2000.

[10]

The Montreal protocol on substances that deplete the ozone layer. Nairobi: Ozone Secretariat United Nations Environment Programme, 2000.

[11]

O’neill BC, Oppenheimer M. Dangerous climate impacts and the Kyoto Protocol. Science. 2002;296(5575):1971–1972. doi: 10.1126/science.1071238

[12]

O’neill B. C., Oppenheimer M. Dangerous climate impacts and the Kyoto Protocol // Science. 2002. Vol. 296, N. 5575. P. 1971–1972. doi: 10.1126/science.1071238

[13]

Garanov SA, Voronov VA, Zabolotny Dyu, et al. Vapor compression heat pump stand. Inzhenernyy zhurnal: nauka i innovatsii. 2016;1(49):6. (In Russ).

[14]

Гаранов С.А., Воронов В.А., Заболотный Д.Ю. и др. Стенд парокомпрессионного теплового насоса // Инженерный журнал: наука и инновации. 2016, № 1(49), С. 6.

[15]

Cayer E, Galanis N, Desilets M, et al. Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Applied Energy. 2009;86(7–8):1055–1063. doi: 10.1016/j.apenergy.2008.09.018

[16]

Cayer E., Galanis N., Desilets M., et al. Analysis of a carbon dioxide transcritical power cycle using a low temperature source // Applied Energy. 2009. Vol. 86, N. 7–8. P. 1055–1063. doi: 10.1016/j.apenergy.2008.09.018

[17]

Arkharov AM, Glukhov SD, Grekhov LV, et al. Use of dimethyl ether as a motor fuel and cooling medium. Khimicheskoe i Neftegazovoe mashinostroenie. 2003;6:17–21. (In Russ).

[18]

Архаров А.М., Глухов С.Д., Грехов Л.В. и др. Использование диметилового эфира в качестве моторного топлива и охлаждающей среды // Химическое и Нефтегазовое машиностроение. 2003. № 6. 17–21.

[19]

Arkharov AM, Glukhov SD, Grekhov LV, et al. Use of dimethyl ether as a motor fuel and a refrigerant. Chemical and petroleum engineering. 2003;39(5):330–336.

[20]

Arkharov A.M., Glukhov S.D., Grekhov L.V., et al. Use of dimethyl ether as a motor fuel and a refrigerant // Chemical and petroleum engineering. 2003. Vol. 39, N. 5. P. 330–336.

[21]

Samokhvalov Y, Kolesnikov A, Krotov A, et al. Heat transfer in the structure of a spiral-wound heat exchanger for liquefied natural gas production: review of numerical models for the heat-transfer coefficient of condensation for a hydrocarbon mixture in a horizontal tube. Journal of Enhanced Heat Transfer. 2018;25(2):109–120. doi: 10.1615/JEnhHeatTransf.2018026396

[22]

Samokhvalov Y., Kolesnikov A., Krotov A., et al. Heat transfer in the structure of a spiral-wound heat exchanger for liquefied natural gas production: review of numerical models for the heat-transfer coefficient of condensation for a hydrocarbon mixture in a horizontal tube // Journal of Enhanced Heat Transfer. 2018. Vol. 25, N. 2. P. 109–120. doi: 10.1615/JEnhHeatTransf.2018026396

[23]

Smorodin AI, Parshin SA. Optimization of Refrigerant Composition of Low-Temperature Stage of Dual Mixed Refrigerant Cycle. Chemical and Petroleum Engineering. 2018;54(7–8):493–498. doi: 10.1007/s10556-018-0507-y

[24]

Smorodin A.I., Parshin S.A. Optimization of Refrigerant Composition of Low-Temperature Stage of Dual Mixed Refrigerant Cycle // Chemical and Petroleum Engineering. 2018. Vol. 54, N. 7–8. P. 493–498. doi: 10.1007/s10556-018-0507-y

[25]

Bychkov EG, Makarov BA, Zherdev AA. Development of a Method of Determining the Component Composition of the Working Fluid of Low-Temperature Throttling Refrigeration Machines Operating with Multicomponent Mixtures of Coolants. Chemical and Petroleum Engineering. 2019;54(9–10):751–759. doi: 10.1007/s10556-019-00544-6

[26]

Bychkov E.G., Makarov B.A., Zherdev A.A. Development of a Method of Determining the Component Composition of the Working Fluid of Low-Temperature Throttling Refrigeration Machines Operating with Multicomponent Mixtures of Coolants // Chemical and Petroleum Engineering. 2019. Vol. 54, N. 9–10. P. 751–759. doi: 10.1007/s10556-019-00544-6

[27]

Krotov AS, Samokhvalov YV, Zhidkov DA, et al. Development of Technologies and Mobile Modular Complexes for Getting Liquid Products from Associated Petroleum Gas. Chemical and Petroleum Engineering. 2019;54(11–12):815–820. doi: 10.1007/s10556-019-00555-3

[28]

Krotov A.S., Samokhvalov Y.V., Zhidkov D.A., et al. Development of Technologies and Mobile Modular Complexes for Getting Liquid Products from Associated Petroleum Gas // Chemical and Petroleum Engineering. 2019. Vol. 54, N. 11–12. P. 815–820. doi: 10.1007/s10556-019-00555-3

[29]

Voronov VA, Zhurlova PYu, Solovov VV, et al. Selection of economical mixed refrigerants for vapor compression refrigeration machines and pumps. Научно-практический электронный журнал Аллея Науки. 2017. № 10. С. 712–716. (In Russ).

[30]

Воронов В.А., Журлова П.Ю., Соловов В.В. и др. Подбор экономичных смесевых хладагентов для парокомпрессионных холодильных машин и насосов // Научно-практический электронный журнал Аллея Науки. 2017. № 10. С. 712–716.

[31]

Arkharov AM, Glukhov SD, Grekhov LV. et al. The use of dimethyl ether as a fuel and coolant for city cars. Polzunovskiy vestnik. 2003;1–2:9–17. (In Russ).

[32]

Архаров А.М., Глухов С.Д., Грехов Л.В. и др. Применение диметилового эфира в качестве топлива и хладагента для городских автомобилей // Ползуновский вестник. 2003. № 1–2. С. 9–17.

[33]

Zherdev AA, Glukhov SD, Polyakov AV, et al. Dimethyl ether - the working fluid of refrigeration machines. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. NE Baumana. Seriya: Mashinostroenie. 2002;S1:55–62. (In Russ).

[34]

Жердев А.А., Глухов С.Д., Поляков А.В. и др. Диметиловый эфир – рабочее тело холодильных машин // Вестник Московского государственного технического университета им. НЭ Баумана. Серия: Машиностроение. 2002. № S1. С. 55–62.

[35]

Gossler H, Drost S, Porras S, et al. The internal combustion engine as a CO2 reformer. Combustion and Flame. 2019;207:186–195. doi: 10.1016/j.combustflame.2019.05.031

[36]

Gossler H., Drost S., Porras S., et al. The internal combustion engine as a CO2 reformer // Combustion and Flame. 2019. № 207. P. 186–195. doi: 10.1016/j.combustflame.2019.05.031

[37]

Kustov AV, Smirnova NL, Berezin DB, et al. Blood porphyrins in binary mixtures of N,N-dimethylformamide with 1-octanol and chloroform: The energetics of solvation, (solute + cosolvent) interactions and model calculations. Journal of Chemical Thermodynamics. 2015;83:104–109. doi: 10.1016/j.jct.2014.12.013

[38]

Kustov A.V., Smirnova N.L., Berezin D.B., et al. Blood porphyrins in binary mixtures of N,N-dimethylformamide with 1-octanol and chloroform: The energetics of solvation, (solute + cosolvent) interactions and model calculations // Journal of Chemical Thermodynamics. 2015. Vol. 83. P. 104–109. doi: 10.1016/j.jct.2014.12.013

[39]

Meunier N, Chauvy R, Mouhoubi S, et al. Alternative production of methanol from industrial CO2. Renewable Energy. 2020;146:1192–1203.

[40]

Meunier N., Chauvy R., Mouhoubi S., et al. Alternative production of methanol from industrial CO2 // Renewable Energy. 2020. Vol. 146. P. 1192–1203.

[41]

Misyura SY, Donskoy IG. Ways to improve the efficiency of carbon dioxide utilization and gas hydrate storage at low temperatures. Journal of CO2 Utilization. 2019;34:313–324.

[42]

Misyura S.Y., Donskoy I.G. Ways to improve the efficiency of carbon dioxide utilization and gas hydrate storage at low temperatures // Journal of CO2 Utilization. 2019. Vol. 34. P. 313–324.

[43]

Rogalev A, Grigoriev E, Kindra V, et al. Thermodynamic optimization and equipment development for a high efficient fossil fuel power plant with zero emissions. Journal of Cleaner Production. 2019;236:117592.

[44]

Rogalev A., Grigoriev E., Kindra V., et al. Thermodynamic optimization and equipment development for a high efficient fossil fuel power plant with zero emissions // Journal of Cleaner Production. 2019. Vol. 236. P. 117592.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/