A mixture of carbon dioxide and dimethyl ether as a refrigerant for ground air conditioning system

Anton A. Zharov , Sergey A. Garanov , Maksim S. Talyzin , Nikita A. Kovalchuk

Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (3) : 171 -178.

PDF
Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (3) : 171 -178. DOI: 10.17816/RF551799
Original Study Articles
research-article

A mixture of carbon dioxide and dimethyl ether as a refrigerant for ground air conditioning system

Author information +
History +
PDF

Abstract

BACKGROUND: The selection of refrigerants for modern air conditioning systems (ACS) in ground facilities is a multidisciplinary task. Particularly, meeting the required energy efficiency of the refrigeration cycle as well as ensuring ecological safety of production, operation, and utilization of the refrigeration system. Herein, the working pressure levels of the refrigeration cycle considerably affect the availability, cost, and safety of the refrigeration equipment. The fire safety of the working substance is also important.

AIM: To investigate the feasibility of a mixture of dimethyl ether and carbon dioxide as refrigerant for energy efficient and safe application of ACS in ground facilities.

METHODS: Comparative analysis of a simple one-stage vapor–compression cycle using traditional working substances (R22 and R410A) and the proposed working substance, which is in the form of a mixture of dimethyl ether and carbon dioxide, using packages, such as Mathcad, HYSYS, CoolPack, and REFPROP, was performed.

Results: An ecofriendly mixture of dimethyl ether and carbon dioxide with low global warming potential and zero ozone depletion potential was proposed as refrigerant. Increasing the percentage of dimethyl ether in the blend reduces the temperature glide in the gas cooler, a property of CO2, and pressures at which the blend operates. The mixture has limited operational properties due to the flammability of dimethyl ether, but its environmental performance makes the material of some practical interest.

CONCLUSION: Fire safety of the proposed working substance was calculated. The concentration of dimethyl ether in the mixture at which it becomes flammable and unsafe for ACS was determined to be 8.3%.

With an increase in the dimethyl ether content in the mixture with CO2 from 4% to 8%, the refrigeration coefficient of the cycle increases from 2.53 to 2.88, but it is 1.57 times less than that of R410A.

The difference in operating pressures between the used non-ecological refrigerants and proposed mixture was determined. Results indicate that the mixture of dimethyl ether and carbon dioxide is currently inapplicable to mass production compressors, which use R410A as refrigerant. The condensation pressure of the most effective and nonflammable mixture of dimethyl ether and CO2 (with dimethyl ether concentration of 8%) is 101 bar against 30 bar for R410A.

Therefore, we intend to evaluate test mixtures of dimethyl ether with other substances in the future.

Keywords

environmentally safe working substance / energy efficient and environmentally safe air conditioning system / refrigerant

Cite this article

Download citation ▾
Anton A. Zharov, Sergey A. Garanov, Maksim S. Talyzin, Nikita A. Kovalchuk. A mixture of carbon dioxide and dimethyl ether as a refrigerant for ground air conditioning system. Refrigeration Technology, 2021, 110(3): 171-178 DOI:10.17816/RF551799

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Molina MJ, Rowland FS. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature. 1974;249:810–812. doi: 10.1038/249810a0

[2]

Molina M.J., Rowland F.S. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone // Nature. 1974. Vol. 249. P. 810–812. doi: 10.1038/249810a0

[3]

Farman JC, Gardiner BG, Shanklin JD. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature. 1985;315:207–210. doi: 10.1038/315207a0

[4]

Farman J.C, Gardiner B.G., Shanklin J.D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction // Nature. 1985. Vol. 315. P. 207–210. doi: 10.1038/315207a0

[5]

Scientific assessment of ozone depletion: 2010. WMO, Global Ozone Research and Monitoring Project, Report 52. WMO, 2011.

[6]

Andrady A, Aucamp PJ, Austin AT, et al. Environmental eff onmental effects of o ects of ozone depletion and its inter one depletion and its interactions with climate actions with climate change: progress report, 2011. Photochem. Photobiol. Sci. 2012;11:13–27. doi: 10.1039/c1pp90033a

[7]

Andrady A., Aucamp P.J., Austin A.T., et al. Environmental eff onmental effects of o ects of ozone depletion and its inter one depletion and its interactions with climate actions with climate change: progress report, 2011 // Photochem. Photobiol. Sci. 2012. Vol. 11. P. 13–27. doi: 10.1039/c1pp90033a

[8]

Mäder JA, Staehelin J, Peter T, et al. Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer. Atmos. Chem. Phys. 2010;10:12161–12171. doi: 10.5194/acp-10-12161-2010

[9]

Mäder J.A., Staehelin J., Peter T., et al. Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer // Atmos. Chem. Phys. 2010. Vol. 10. P. 12161–12171. doi: 10.5194/acp-10-12161-2010

[10]

Molina M, Zaelke D, Sarma KM, et al. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions. Proceedings of the National Academy of Sciences. 2009;106(49):20616–20621. doi: 10.1073/pnas.0902568106

[11]

Molina M., Zaelke D., Sarma K.M., et al. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions // Proceedings of the National Academy of Sciences. 2009. Vol. 106, N 49. P. 20616–20621. doi: 10.1073/pnas.0902568106

[12]

Grunewald N, Martinez-Zarzoso I. Did the Kyoto Protocol fail? An evaluation of the effect of the Kyoto Protocol on CO2 emission. Environment and Development Economics. 2015;21(01):1–22. doi: 10.1017/s1355770x15000091

[13]

Grunewald N., Martinez-Zarzoso I. Did the Kyoto Protocol fail? An evaluation of the effect of the Kyoto Protocol on CO2 emission // Environment and Development Economics. 2015. Vol. 21, N 01. P. 1–22. doi: 10.1017/s1355770x15000091

[14]

Aichele R, Felbermayr G. The Effect of the Kyoto Protocol on Carbon Emissions. Journal of Policy Analysis and Management. 2013;32(4):731–757. doi: 10.1002/pam.21720

[15]

Aichele R., Felbermayr G. The Effect of the Kyoto Protocol on Carbon Emissions // Journal of Policy Analysis and Management. 2013. Vol. 32, N 4. P. 731–757. doi: 10.1002/pam.21720

[16]

Velders GJM, Andersen SO, Daniel JS, et al. The importance of the Montreal Protocol in protecting climate. Proceedings of the National Academy of Sciences. 2007;104(12):4814–4819. doi: 10.1073/pnas.0610328104

[17]

Velders G.J.M., Andersen S.O., Daniel J.S., et al. The importance of the Montreal Protocol in protecting climate // Proceedings of the National Academy of Sciences. 2007. Vol. 104, N 12. P. 4814–4819. doi: 10.1073/pnas.0610328104

[18]

Box JE, Colgan WT, Christensen TR, et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 2019;14:045010. doi: 10.1088/1748-9326/aafc1b

[19]

Box J.E., Colgan W.T., Christensen T.R., et al. Key indicators of Arctic climate change: 1971–2017 // Environ. Res. Lett. 2019. Vol. 14. P. 045010. doi: 10.1088/1748-9326/aafc1b

[20]

Sarkar J, Bhattacharyya S, Ram Gopal M. Natural refrigerant-based subcritical and transcritical cucles for high temperature heating. International Journal of Refrigeration. 2007;30(1):3–10. doi: 10.1016/j.ijrefrig.2006.03.008

[21]

Sarkar J., Bhattacharyya S., Ram Gopal M. Natural refrigerant-based subcritical and transcritical cucles for high temperature heating // International Journal of Refrigeration. 2007. Vol. 30, N 1. P. 3–10. doi: 10.1016/j.ijrefrig.2006.03.008

[22]

Cayer E, Galanis N, Desilets M, et al. Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Applied Energy. 2009;86(7–8):1055–1063. doi: 10.1016/j.apenergy.2008.09.018

[23]

Cayer E., Galanis N., Desilets M., et al. Analysis of a carbon dioxide transcritical power cycle using a low temperature source // Applied Energy. 2009. Vol. 86, N 7–8. P. 1055–1063. doi: 10.1016/j.apenergy.2008.09.018

[24]

Arkharov AM, Glukhov SD, Grekhov LV, et al. Use of dimethyl ether as engine fuel and cooling medium. Khimicheskoe I Neftegazovoe Mashinostroenie. 2003;6:17–21.

[25]

Arkharov A.M., Glukhov S.D., Grekhov L.V., et al. Use of dimethyl ether as engine fuel and cooling medium // Khimicheskoe I Neftegazovoe Mashinostroenie. 2003. Vol. 6. P. 17–21.

[26]

Catizzone E, Bonura G, Migliori M, et al. CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives. Molecules. 2017;23(1):31. doi: 10.3390/molecules23010031

[27]

Catizzone E., Bonura G., Migliori M., et al. CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives // Molecules. 2017. Vol. 23, N 1. P. 31. doi: 10.3390/molecules23010031

[28]

Azizi Z, Rezaeimanesh M, Tohidian T, et al. Dimethyl Ether: A Review of Technologies and Production Challenges. Chemical Engineering and Processing. 2014. doi: 10.1016/j.cep.2014.06.007

[29]

Azizi Z., Rezaeimanesh M., Tohidian T., et al. Dimethyl Ether: A Review of Technologies and Production Challenges // Chemical Engineering and Processing. 2014. doi: 10.1016/j.cep.2014.06.007

[30]

Sorenson SC. Dimethyl Ether in Diesel Engines: Progress and Perspectives. Journal of Engineering for Gas Turbines and Power. 2001;123(3):652. doi: 10.1115/1.1370373

[31]

Sorenson S.C. Dimethyl Ether in Diesel Engines: Progress and Perspectives // Journal of Engineering for Gas Turbines and Power. 2001. Vol. 123, N 3. P. 652. doi: 10.1115/1.1370373

[32]

Anggarani R, Maymuchar Wibowo CS, Sukaraharja R. Performance and Emission Characteristics of Dimethyl Ether (DME) Mixed Liquefied Gas for Vehicle (LGV) as Alternative Fuel for Spark Ignition Engine. Energy Procedia. 2015;65:274–281. doi: 10.1016/j.egypro.2015.01.048

[33]

Anggarani R., Maymuchar Wibowo C.S., Sukaraharja R. Performance and Emission Characteristics of Dimethyl Ether (DME) Mixed Liquefied Gas for Vehicle (LGV) as Alternative Fuel for Spark Ignition Engine // Energy Procedia. 2015. Vol. 65. P. 274–281. doi: 10.1016/j.egypro.2015.01.048

[34]

Aboul-Fotouh SMK. Production of dimethylether (DME) as a clean fuel using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts. Journal of Fuel Chemistry and Technology. 2014;42(3):350–356. doi: 10.1016/s1872-5813(14)60020-7

[35]

Aboul-Fotouh S.M.K. Production of dimethylether (DME) as a clean fuel using sonochemically prepared CuO and/or ZnO-modified γ-alumina catalysts // Journal of Fuel Chemistry and Technology. 2014. Vol. 42, N 3. P. 350–356. doi: 10.1016/s1872-5813(14)60020-7

[36]

Semelsberger TA, Borup RL, Greene HL. Dimethyl ether (DME) as an alternative fuel. Journal of Power Sources. 2006;156(2):497–511. doi: 10.1016/j.jpowsour.2005.05.082

[37]

Semelsberger T.A., Borup R.L., Greene H.L. Dimethyl ether (DME) as an alternative fuel // Journal of Power Sources. 2006. Vol. 156, N 2. P. 497–511. doi: 10.1016/j.jpowsour.2005.05.082

[38]

Voronov VA, Zhurlova PYu, Solovov VV, et al. Podbor ekonomichnykh smesevykh khladagentov dlya parokompressionnykh kholodilnykh mashin i nasosov. Nauchno-prakticheskiy elektronnyy zhurnal Alleya Nauki. 2017;10. (In Russ).

[39]

Воронов В.А., Журлова П.Ю., Соловов В.В., и др. Подбор экономичных смесевых хладагентов для парокомпрессионных холодильных машин и насосов // Научно-практический электронный журнал Аллея Науки. 2017. №10.

[40]

Garanov SA, Voronov VA, Zabolotnyy DYu, et al. Stend parokompressionnogo teplovogo nasosa. Inzhenernyy zhurnal: nauka i innovatsii. 2016;1(49):6. (In Russ).

[41]

Гаранов С.А., Воронов В.А., Заболотный Д.Ю., и др. Стенд парокомпрессионного теплового насоса // Инженерный журнал: наука и инновации. 2016. №1(49). С. 6.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

52

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/