Development of building microclimatic systems by traditional and modern automated methods

Anton A. Zharov , Sergey A. Garanov , Alexey V. Kasatkin

Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (3) : 145 -154.

PDF
Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (3) : 145 -154. DOI: 10.17816/RF543591
Reviews
review-article

Development of building microclimatic systems by traditional and modern automated methods

Author information +
History +
PDF

Abstract

Automated packages for calculations of the engineering systems of buildings, which accelerate the design process and solve complex engineering problems, have been increasing recently. Therefore, comparing traditional methods of calculation and design of microclimatic systems using manual methods with those that use mathematical modeling in known modern packages is important. This comparison is especially relevant for the space industry, which is intended to be advanced. The paper considers the architectural package Autodesk Revit and the cycle calculation package Aspen HYSYS. A calculation model of the building was created in accordance with the drawings, and heat gains and losses were calculated. Manual calculation and comparison were then performed. A pneumohydraulic scheme was illustrated and calculated manually using the calculation package. The discrepancy in the results was evaluated. Results revealed that the use of Revit and HYSYS mathematical modeling systems is promising. Thus, considering the real possibilities of the designed engineering systems of specific buildings and structures, calculations in the automated package Aspen HYSYS agree well with traditional methods of manual calculations, and those in the architectural package Autodesk Revit should be adjusted.

Keywords

microclimatic system / automated method / Autodesk Revit / Aspen Hysys

Cite this article

Download citation ▾
Anton A. Zharov, Sergey A. Garanov, Alexey V. Kasatkin. Development of building microclimatic systems by traditional and modern automated methods. Refrigeration Technology, 2021, 110(3): 145-154 DOI:10.17816/RF543591

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mao C, Baltazar JC, Haberl JS. Comparison of ASHRAE peak cooling load calculation methods. Science and Technology for the Built Environment. 2019;25(2):189–208. doi: 10.1080/23744731.2018.1510240

[2]

Mao C., Baltazar J.C., Haberl J.S. Comparison of ASHRAE peak cooling load calculation methods // Science and Technology for the Built Environment. 2019. Vol. 25, N 2. P. 189–208. doi: 10.1080/23744731.2018.1510240

[3]

Cui M, Chen T. A revised radiant time series (RTS) method for intermittent cooling load calculation. In: Eleventh International IBPSA Conference. Glasgow, Scotland. 2009. July. 2009:392–399. Accessed: 10.07.2023. Available from: https://www.aivc.org/sites/default/files/BS09_0392_399.pdf

[4]

Cui M., Chen T. A revised radiant time series (RTS) method for intermittent cooling load calculation // Eleventh International IBPSA Conference. Glasgow, Scotland. 2009. July. P. 392–399. [дата обращения: 10.07.2023] Доступ по ссылке: https://www.aivc.org/sites/default/files/BS09_0392_399.pdf

[5]

Wu S, Shen Q, Deng Y, et al. Natural-language-based intelligent retrieval engine for BIM object database. Computers in Industry. 2019;108:73–88. doi: 10.1016/j.compind.2019.02.016

[6]

Wu S., Shen Q., Deng Y., et al. Natural-language-based intelligent retrieval engine for BIM object database // Computers in Industry. 2019. Vol. 108. P. 73–88. doi: 10.1016/j.compind.2019.02.016

[7]

Kim B, Park J, Jeong J. Indoor air quality enhancement performance of liquid desiccant and evaporative cooling-assisted air conditioning systems. Sustainability (Switzerland). 2019;11(4). doi: 10.3390/su11041036

[8]

Kim B., Park J., Jeong J. Indoor air quality enhancement performance of liquid desiccant and evaporative cooling-assisted air conditioning systems // Sustainability (Switzerland). 2019. Vol. 11, N 4. doi: 10.3390/su11041036

[9]

Li H, Shan MZ, Yu Y, et al. Dynamic simulation of a VAV system based on dynamic PMV control. IOP Conf. Ser.: Earth Environ. Sci. 2019;238(1). doi: 10.1088/1755–1315/238/1/012053

[10]

Li H., Shan M.Z., Yu Y., et al. Dynamic simulation of a VAV system based on dynamic PMV control // IOP Conf. Ser.: Earth Environ. Sci. 2019. Vol. 238(1). doi: 10.1088/1755-1315/238/1/012053

[11]

Zhang S, Cheng Y, Oladokun MO, et al. Heat removal efficiency of stratum ventilation for air-side modulation. Applied Energy. 2019;238:1237–1249. doi: 10.1016/j.apenergy.2019.01.148

[12]

Zhang S., Cheng Y., Oladokun M.O., et al. Heat removal efficiency of stratum ventilation for air-side modulation // Applied Energy. 2019. Vol. 238. P. 1237–1249. doi: 10.1016/j.apenergy.2019.01.148

[13]

Zhuang J, Chen Y, Wu J. Cascade control for supply air temperature in a variable air volume system. IOP Conf. Ser.: Earth Environ. Sci. 2019;238. doi: 10.1088/1755-1315/238/1/012021

[14]

Zhuang J., Chen Y., Wu J. Cascade control for supply air temperature in a variable air volume system // IOP Conf. Ser.: Earth Environ. Sci. 2019. Vol. 238. doi: 10.1088/1755-1315/238/1/012021

[15]

Ali MY, Wu G, Liu S, et al. CFD analysis of thermal stratification under PLOFA transient in CLEAR-S. Progress in Nuclear Energy. 2019;115:21–29. doi: 10.1016/j.pnucene.2019.03.011

[16]

Ali M.Y., Wu G., Liu S., et al. CFD analysis of thermal stratification under PLOFA transient in CLEAR-S // Progress in Nuclear Energy. 2019. Vol. 115. P. 21–29. doi: 10.1016/j.pnucene.2019.03.011

[17]

Qi D, Pu L, Ma Z, et al. Effects of ground heat exchangers with different connection configurations on the heating performance of GSHP systems. Geothermics. 2019;80:20–30. doi: 10.1016/j.geothermics.2019.02.002

[18]

Qi D., Pu L., Ma Z., et al. Effects of ground heat exchangers with different connection configurations on the heating performance of GSHP systems // Geothermics. 2019. Vol. 80. P. 20–30. doi: 10.1016/j.geothermics.2019.02.002

[19]

Bogoslovsky VN, Krupnov BA, Skanavi AN. Internal sanitary installations. In 3 Parts. Part I. Heating. Moscow: Stroyizdat; 1990. (In Russ).

[20]

Богословский В.Н., Крупнов Б.А., Сканави А.Н. Внутренние санитарно-технические устройства. В 3 ч. Ч I. Отопление. М.: Стройиздат, 1990.

[21]

Hepbasli A, Kalinci Y. A review of heat pump water heating systems. Renewable and Sustainable Energy Reviews. 2019;13(6–7): 1211–1229. doi: 10.1016/j.rser.2008.08.002

[22]

Hepbasli A., Kalinci Y. A review of heat pump water heating systems // Renewable and Sustainable Energy Reviews. 2019. Vol. 13, N 6–7. P. 1211–1229. doi: 10.1016/j.rser.2008.08.002

[23]

Self SJ, Reddy BV, Rosen MA. Geothermal heat pump systems: Status review and comparison with other heating options. Applied energy. 2013;101:341–348. doi: 10.1016/j.apenergy.2012.01.048

[24]

Self S.J., Reddy B.V., Rosen M.A. Geothermal heat pump systems: Status review and comparison with other heating options // Applied energy. 2013. Vol. 101. P. 341–348. doi: 10.1016/j.apenergy.2012.01.048

[25]

Seo Y, Kim JH, Seo UJ. Eco-friendly snow melting systems developed for modern expressways. Journal of Testing and Evaluation. 2019;47(5):3432–3447. doi: 10.1520/JTE20180161

[26]

Seo Y., Kim J.H, Seo U.J. Eco-friendly snow melting systems developed for modern expressways // Journal of Testing and Evaluation. 2019. Vol. 47, N 5. P. 3432–3447. doi: 10.1520/JTE20180161

[27]

Tissen C, Menberg K, Bayer P, et al. Meeting the demand: Geothermal heat supply rates for an urban quarter in Germany. Geothermal Energy. 2019;7(1). doi: 10.1186/s40517-019-0125-8

[28]

Tissen C., Menberg K., Bayer P., et al. Meeting the demand: Geothermal heat supply rates for an urban quarter in germany // Geothermal Energy. 2019. Vol. 7, N 1. doi: 10.1186/s40517-019-0125-8

[29]

West AH, Posarac D, Ellis N. Assessment of four biodiesel production processes using HYSYS.Plant. Bioresource technology. 2008;99(14):6587–6601. doi: 10.1016/j.biortech.2007.11.046

[30]

West A.H., Posarac D., Ellis N. Assessment of four biodiesel production processes using HYSYS.Plant // Bioresource technology. 2008. Vol. 99, N 14. P. 6587–6601. doi: 10.1016/j.biortech.2007.11.046

[31]

Smejkal Q, Šoóš M. Comparison of computer simulation of reactive distillation using ASPEN PLUS and HYSYS software. Chemical Engineering and Processing: Process Intensification. 2002;41(5):413–418. doi: 10.1016/S0255-2701(01)00160-X

[32]

Smejkal Q., Šoóš M. Comparison of computer simulation of reactive distillation using ASPEN PLUS and HYSYS software // Chemical Engineering and Processing: Process Intensification. 2002. Vol. 41, N 5. P. 413–418. doi: 10.1016/S0255-2701(01)00160-X

[33]

Abdollahi-Demneh F, Moosavian MA, Omidkhah MR, et al. Calculating exergy in flowsheeting simulators: A HYSYS implementation. Energy. 2011;36(8):5320–5327. doi: 10.1016/j.energy.2011.06.040

[34]

Abdollahi-Demneh F., Moosavian M.A., Omidkhah M.R., et al. Calculating exergy in flowsheeting simulators: A HYSYS implementation // Energy. 2011. Vol. 36, N 8. P. 5320–5327. doi: 10.1016/j.energy.2011.06.040

[35]

Arora RC. Refrigeration and air conditioning. New Delhi: PHI Learning Pvt. Ltd.; 2012.

[36]

Arora R.C. Refrigeration and air conditioning. New Delhi: PHI Learning Pvt. Ltd. 2012.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/