Range of application of heat pump systems on various natural refrigerants

Sofia V. Maslikova , Alexander S. Krotov , Georgii M. Kosenko , Maxim S. Maziakin

Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (1) : 51 -61.

PDF
Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (1) : 51 -61. DOI: 10.17816/RF490662
Original Study Articles
research-article

Range of application of heat pump systems on various natural refrigerants

Author information +
History +
PDF

Abstract

BACKGROUND: The utilization of heat pumps (variation of vapor compressing machines) for heat transfer between different temperature levels is a promising development trend, considering their low-cost heat energy, environmental friendliness of working media, economically sufficient solutions, and low-cost maintenance. Heat pumps are used for heating in building structures, where low potential heat sources include wastewater streams, groundwater streams, air, and the heat of the soil. The low potential heat of heat emissions from industrial plants may also be used, which can be cost-effective in terms of production resource usage.

AIMS: This study aims to select a refrigerant and its composition to provide operational stability for heat pumps at temperature levels from 48°C to 95°C with minimum energy consumption for the most widespread thermodynamical cycles.

MATERIALS AND METHODS: Standard thermodynamic cycles of heat pumps were simulated using the Aspen HYSYS software. Further optimization and parameter selection was performed using the MATLAB module Global Optimization Toolbox.

RESULTS: In compliance with demanded design parameters, the results of each working medium simulation were obtained. Energy-efficient parameters of common heat pump thermodynamical cycles were determined.

CONCLUSIONS: According to the exergy analysis of the thermodynamical cycles, mixed refrigerants, pentane, and ammonia were determined as the most suitable and energy-efficient working fluids for heat pumps.

Keywords

heat pump / natural refrigerants / zeotropic mixtures / exergy efficiency

Cite this article

Download citation ▾
Sofia V. Maslikova, Alexander S. Krotov, Georgii M. Kosenko, Maxim S. Maziakin. Range of application of heat pump systems on various natural refrigerants. Refrigeration Technology, 2021, 110(1): 51-61 DOI:10.17816/RF490662

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lozovetsky VV, Komarov EG, Lebedev VV. Utilization of wastewater heat from the finishing shops of textile enterprises. Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstilnoy promyshlennosti. 2020;6:162–168. (in Russ.)

[2]

Лозовецкий В.В., Комаров Е.Г., Лебедев В.В. Утилизация тепла сточных вод отделочных цехов текстильных предприятий // Известия высших учебных заведений. Технология текстильной промышленности. 2020. №. 6. С. 162–168.

[3]

Vendland LE, Gavrilova YuA, Pugachuk AS. Implementation of heat pump systems for minimizing heat losses with ventilating steam supply. J. Phys.: Conf. Ser. 2020;1675. doi: 10.1088/1742-6596/1675/1/012026

[4]

Vendland L.E., Gavrilova Yu.A., Pugachuk A.S. Implementation of heat pump systems for minimizing heat losses with ventilating steam supply // J. Phys.: Conf. Ser. 2020. Vol. 1675. doi: 10.1088/1742-6596/1675/1/012026

[5]

Venkatarathnam G. Cryogenic Mixed Refrigerant Processes. New York: Springer; 2008. doi: 10.1007/978-0-387-78514-1

[6]

Venkatarathnam G. Cryogenic Mixed Refrigerant Processes. New York: Springer, 2008. doi: 10.1007/978-0-387-78514-1

[7]

Lozovetsky VV, Lebedev VV, Cherkina VM. Reducing the thermal load on the environment with heat pumps in the wastewater treatment system. Inzhenerno-fizicheskiy zhurnal. 2018;91(2):504–512. (in Russ.)

[8]

Лозовецкий В.В., Лебедев В.В., Черкина В.М. Снижение тепловой нагрузки на окружающую среду с помощью тепловых насосов в системе очистки сточных вод // Инженерно-физический журнал. 2018. Т. 91, №. 2. С. 504–512.

[9]

Wu D, Hu B, Wang RZ. Vapor compression heat pumps with pure Low-GWP refrigerants. Renewable and Sustainable Energy Reviews. 2021;138(2):110571. doi: 10.1016/j.rser.2020.110571

[10]

Wu D., Hu B., Wang R.Z. Vapor compression heat pumps with pure Low-GWP refrigerants // Renewable and Sustainable Energy Reviews. 2021. Vol. 138, N 2. P. 110571. doi: 10.1016/j.rser.2020.110571

[11]

Bamigbetan O, Eikevik TM, Nekså P, et al. Theoretical analysis of suitable fluids for high temperature heat pumps up to 125 °C heat delivery. Int. J. Refrigeration. 2018;92:185–195. doi: 10.1016/j.ijrefrig.2018.05.017

[12]

Bamigbetan O., Eikevik T.M., Nekså P., et al. Theoretical analysis of suitable fluids for high temperature heat pumps up to 125 °C heat delivery // Int. J. Refrigeration. 2018. Vol. 92. P. 185–195. doi: 10.1016/j.ijrefrig.2018.05.017

[13]

Roskosch D, Venzik V, Schilling J, et al. Beyond Temperature Glide: The Compressor is Key to Realizing Benefits of Zeotropic Mixtures in Heat Pumps. Energy Technology. 2021;9:2000955. doi: 10.1002/ente.202000955

[14]

Roskosch D., Venzik V., Schilling J., et al. Beyond Temperature Glide: The Compressor is Key to Realizing Benefits of Zeotropic Mixtures in Heat Pumps // Energy Technology. 2021. Vol. 9. P. 2000955. doi: 10.1002/ente.202000955

[15]

Krotov A, Samokhvalov Y, Verkhovny A, et al. Closed cycle cryosurgical device with phase separator and mixed refrigerant. In: Cryogenics 2019. Proceedings of the 15th IIR International Conference: Prague, Czech Republic, April 8–11, 2019. 2019. doi: 10.18462/iir.cryo.2019.0067

[16]

Krotov A., Samokhvalov Y., Verkhovny A., et al. Closed cycle cryosurgical device with phase separator and mixed refrigerant // Cryogenics 2019. Proceedings of the 15th IIR International Conference: Prague, Czech Republic, April 8–11, 2019. 2019. doi: 10.18462/iir.cryo.2019.0067

[17]

Shungarov EKh, Garanov SA. Comparison of the characteristics of scroll compressors for use in air heat pumps. Kholodilnaya i kriogennaya tekhnika, sistemy konditsionirovaniya i zhizneobespecheniya. 2020;355–363. (in Russ.)

[18]

Шунгаров Э.Х., Гаранов С.А. Сравнение характеристик спиральных компрессоров для применения в воздушных тепловых насосах // Холодильная и криогенная техника, системы кондиционирования и жизнеобеспечения. 2020. С. 355–363.

[19]

Byrne P, Ghoubali R. Exergy analysis of heat pumps for simultaneous heating and cooling. Applied Thermal Engineering. 2019;149:414–424. doi: 10.1016/j.applthermaleng.2018.12.069

[20]

Byrne P., Ghoubali R. Exergy analysis of heat pumps for simultaneous heating and cooling // Applied Thermal Engineering. 2019. Vol. 149. P. 414–424. doi: 10.1016/j.applthermaleng.2018.12.069

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/