Power generation system on Saturn’s Titan moon using geothermal energy
Vladimir A. Voronov , Anton A. Zharov , Konstantin A. Apsit
Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (2) : 103 -112.
Power generation system on Saturn’s Titan moon using geothermal energy
BACKGROUND: Because Saturn’s satellite, Titan, is of particular research interest with respect to planning future missions, considering the issue of power generation on the surface of Titan is necessary. This study shows that the use of geothermal sources is one of the most promising methods of generating electricity on Titan.
AIM: The purpose of the study is to explore the best way to utilize geothermal energy from the surface of Titan.
METHODS: Therefore, energy installations operating according to the precritical Rankine, postcritical Rankine, two-cascade Rankine, and Brighton cycles were investigated in this study. The selection of working fluids for these cycles would be based on the fluids present in the atmosphere of Titan to reduce the amount of materials transported from Earth. The power cycle efficiencies for different working fluids, degree of preturbine steam superheating, and pressures were calculated to enable the comparison of the maximum possible efficiency for each cycle under conditions equivalent to those on Titan.
RESULTS: In general, the calculations herein revealed that all cycles under consideration are feasible under the given conditions. Notably, a simple precritical Rankine cycle with methane as the working fluid exhibits the highest efficiency under the given conditions.
Rankine cycle / Brayton cycle / organic Rankine cycle (ORC) / geothermal energy
| [1] |
Hörst SM. Titan’s atmosphere and climate. JGR Planets. 2017;122(3):432–482. doi: 10.1002/2016JE005240 |
| [2] |
Hörst S.M. Titan’s atmosphere and climate // JGR Planets. 2017. Vol. 122, N 3. P. 432–482. doi: 10.1002/2016JE005240 |
| [3] |
Hayes AG, Aharonson O, Lunine JI, et al. Transient surface liquid in Titan’s polar regions from Cassini. Icarus. 2011;211(1):655–671. doi: 10.1016/j.icarus.2010.08.017 |
| [4] |
Hayes A.G., Aharonson O., Lunine J.I., et al. Transient surface liquid in Titan’s polar regions from Cassini // Icarus. 2011. Vol. 211, N 1. P. 655–671. doi: 10.1016/j.icarus.2010.08.017 |
| [5] |
Lunine JI. Does Titan have oceans? American Scientist. 1994;82(2):134–143. |
| [6] |
Lunine J.I. Does Titan have oceans? // American Scientist. 1994. Vol. 82, N 2. P. 134–143. |
| [7] |
Müller-Wodarg I, Griffith CA, Lellouch E, et al. Titan: Interior, surface, atmosphere, and space environment. Cambridge: Cambridge University Press; 2014. doi: 10.1111/maps.12317 |
| [8] |
Müller-Wodarg I., Griffith C.A., Lellouch E., et al. Titan: Interior, surface, atmosphere, and space environment. Cambridge: Cambridge University Press, 2014. doi: 10.1111/maps.12317 |
| [9] |
Porco CC, Baker E, Barbara J, et al. Imaging of Titan from the Cassini spacecraft. Nature. 2005;434:159–168. doi: 10.1038/nature03436 |
| [10] |
Porco C.C., Baker E., Barbara J., et al. Imaging of Titan from the Cassini spacecraft // Nature. 2005. Vol. 434. P. 159–168. doi: 10.1038/nature03436 |
| [11] |
Fortes AD, Grindrod PM, Trickett SK, et al. Ammonium sulfate on Titan: Possible origin and role in cryovolcanism. Icarus. 2007;188(1):139–153. doi: 10.1016/j.icarus.2006.11.002 |
| [12] |
Fortes A.D., Grindrod P.M., Trickett S.K., et al. Ammonium sulfate on Titan: Possible origin and role in cryovolcanism // Icarus. 2007. Vol. 188, N 1. P. 139–153. doi: 10.1016/j.icarus.2006.11.002 |
| [13] |
Iess L, Jacobson RA, Ducci M, et al. The tides of Titan. Science. 2012;337(6093):457–459. doi: 10.1126/science.1219631 |
| [14] |
Iess L., Jacobson R.A., Ducci M., et al. The tides of Titan // Science. 2012. Vol. 337, N 6093. P. 457–459. doi: 10.1126/science.1219631 |
| [15] |
Mitri G, Showman AP, Lunine JI, et al. Resurfacing of Titan by ammonia-water cryomagma. Icarus. 2008;196(1):216–224. doi: 10.1016/j.icarus.2008.02.024 |
| [16] |
Mitri G., Showman A.P., Lunine J.I., et al. Resurfacing of Titan by ammonia-water cryomagma // Icarus. 2008. Vol. 196, N 1. P. 216–224. doi: 10.1016/j.icarus.2008.02.024 |
| [17] |
Fortes AD. Titan’s internal structure and the evolutionary consequences. Planetary and Space Science. 2012;60(1):10–17. doi: 10.1016/j.pss.2011.04.010 |
| [18] |
Fortes A.D. Titan’s internal structure and the evolutionary consequences // Planetary and Space Science. 2012. Vol. 60, N 1. P. 10–17. doi: 10.1016/j.pss.2011.04.010 |
| [19] |
Mousis O, Schmitt B. Sequestration of ethane in the cryovolcanic subsurface of Titan. ApJ. 2008;677(1):L67–L70. doi: 10.1086/587141 |
| [20] |
Mousis O., Schmitt B. Sequestration of ethane in the cryovolcanic subsurface of Titan // ApJ. 2008. Vol. 677, N 1. P. L67–L70. doi: 10.1086/587141 |
| [21] |
Cordier D, Mousis O, Lunine JI, et al. An estimate of the chemical composition of Titan’s lakes. ApJ. 2009;707(2):L128–L131. doi: 10.1088/0004-637X/707/2/L128 |
| [22] |
Cordier D., Mousis O., Lunine J.I., et al. An estimate of the chemical composition of Titan’s lakes // ApJ. 2009. Vol. 707, N 2. P. L128–L131. doi: 10.1088/0004-637X/707/2/L128 |
| [23] |
Sotin C, Lawrence KJ, Reinhardt B, et al. Observations of Titan’s Northern lakes at 5 μm: Implications for the organic cycle and geology. Icarus. 2012;221(2):768–786. doi: 10.1016/j.icarus.2012.08.017 |
| [24] |
Sotin C., Lawrence K.J., Reinhardt B., et al. Observations of Titan’s Northern lakes at 5 μm: Implications for the organic cycle and geology // Icarus. 2012. Vol. 221, N 2. P. 768–786. doi: 10.1016/j.icarus.2012.08.017 |
| [25] |
Lunine JI, Lorenz RD. Rivers, lakes, dunes, and rain: Crustal processes in Titan’s methane cycle. Annual Review of Earth and Planetary Sciences. 2009;37:299–320. doi: 10.1146/annurev.earth.031208.100142 |
| [26] |
Lunine J.I., Lorenz R.D. Rivers, lakes, dunes, and rain: Crustal processes in Titan’s methane cycle // Annual Review of Earth and Planetary Sciences. 2009. Vol. 37. P. 299–320. doi: 10.1146/annurev.earth.031208.100142 |
| [27] |
Castillo‐Rogez JC, Lunine JI. Evolution of Titan’s rocky core constrained by Cassini observations. Geophysical Research Letters. 2010;37:L20205. doi: 10.1029/2010GL044398 |
| [28] |
Castillo-Rogez J.C., Lunine J.I. Evolution of Titan’s rocky core constrained by Cassini observations // Geophysical Research Letters. 2010. Vol. 37. P. L20205. doi: 10.1029/2010GL044398 |
| [29] |
Cordier D, Mousis O, Lunine JI, et al. Titan’s lakes chemical composition: sources of uncertainties and variability. Planetary and Space Science. 2012;61(1):99–107. doi: 10.1016/j.pss.2011.05.009 |
| [30] |
Cordier D., Mousis O., Lunine J.I., et al. Titan’s lakes chemical composition: sources of uncertainties and variability // Planetary and Space Science. 2012. Vol. 61, N 1. P. 99–107. doi: 10.1016/j.pss.2011.05.009 |
| [31] |
Luspay-Kuti A, Chevrier VF, Cordier D, et al. Experimental constraints on the composition and dynamics of Titan’s polar lakes. Earth and Planetary Science Letters. 2015;410:75–83. doi: 10.1016/j.epsl.2014.11.023 |
| [32] |
Luspay-Kuti A., Chevrier V.F., Cordier D., et al. Experimental constraints on the composition and dynamics of Titan’s polar lakes // Earth and Planetary Science Letters. 2015. Vol. 410. P. 75–83. doi: 10.1016/j.epsl.2014.11.023 |
| [33] |
Tokano T, Lorenz RD. Sun-stirred Kraken Mare: Circulation in Titan’s seas induced by solar heating and methane precipitation. Icarus. 2016;270:67–84. doi: 10.1016/j.icarus.2015.08.033 |
| [34] |
Tokano T., Lorenz R.D. Sun-stirred Kraken Mare: Circulation in Titan’s seas induced by solar heating and methane precipitation // Icarus. 2016. Vol. 270. P. 67–84. doi: 10.1016/j.icarus.2015.08.033 |
| [35] |
Voronov V, Leonov V. Testing of a scroll expander in various models. Chemical and Petroleum Engineering. 2015;51(1):33–36. doi: 10.1007/s10556-015-9993-3 |
| [36] |
Voronov V., Leonov V. Testing of a scroll expander in various models // Chemical and Petroleum Engineering. 2015. Vol. 51, N 1. P. 33–36. doi: 10.1007/s10556-015-9993-3 |
| [37] |
Ivlev V, Bozrov V, Voronov V. Testing a scroll machine in pneumatic motor expander modes. Journal of Machinery Manufacture and Reliability. 2015;44(2):120–124. doi: 10.3103/S1052618815020053 |
| [38] |
Ivlev V., Bozrov V., Voronov V. Testing a scroll machine in pneumatic motor expander modes. // Journal of Machinery Manufacture and Reliability. 2015. Vol. 44, N 2. P. 120–124. doi: 10.3103/S1052618815020053 |
| [39] |
Leonov VP, Voronov VA, Apsit KA, et al. Rankine cycle with a low-grade heat source. Inzhenernyy zhurnal: Nauka i innovatsii. 2015;2:1-7. (In Russ). |
| [40] |
Леонов В.П., Воронов В.А., Апсит К.А., и др. Цикл Ренкина с низкопотенциальным источником теплоты // Инженерный журнал: Наука и инновации. 2015. Вып. 2. С. 1–7 |
| [41] |
Apsit KA, Khutsieva SI, Parkin AN, et al. Stand for the study of a mixing heat exchanger-evaporator of a low-potential power plant. Inzhenernyy zhurnal: Nauka i innovatsii. 2015;7:1–11. (In Russ). doi: 10.18698/2308-6033-2015-7-1430 |
| [42] |
Апсит К.А., Хуциева С.И., Паркин А.Н., и др. Стенд для исследования смесительного теплообменника-испарителя низкопотенциальной энергоустановки. // Инженерный журнал: Наука и инновации. 2015. Вып. 7. С. 1–11. doi: 10.18698/2308-6033-2015-7-1430 |
Eco-Vector
/
| 〈 |
|
〉 |