Mathematical modeling of heat and mass transfer processes of air masses in premises with an ice arena

Ivan A. Burkov , Michail A. Kolosov , Anton A. Zharov , Leonid М. Kolishkin , Nikolay A. Andreev

Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (2) : 77 -84.

PDF
Refrigeration Technology ›› 2021, Vol. 110 ›› Issue (2) : 77 -84. DOI: 10.17816/RF322770
Original Study Articles
research-article

Mathematical modeling of heat and mass transfer processes of air masses in premises with an ice arena

Author information +
History +
PDF

Abstract

BACKGROUND: The ventilation and air conditioning systems for ice arenas should not only provide a comfortable environment for the people indoors and on the ice but also protect the ice surface from moisture condensation. The use of finite element methods in designing the ventilation systems will make it possible to determine the temperature and humidity conditions in the entire volume of the ventilated room at the calculation stage and, if necessary, to correct the ventilation parameters at minimal costs at the design stage.

AIM: To describe the methods of numerical simulation of heat and mass transfer in a room taking into account the humidity and radiant heat exchange for the case of a small training arena.

MATERIALS AND METHODS: ANSYS CFX software was used for modeling, using the finite volume method for calculations. The object of the study was a digital twin of a small training ice arena, making it possible to take into account the thermal-physical processes occurring in the room. Analysis was performed for the steady-state (stationary) heat and mass transfer condition. The modeling results were evaluated by considering air temperature and humidity contours in the most characteristic secant planes. Given that the direct determination of air humidity was not possible using the software package, a description of a method for the determination of humidity by empirical equations was provided.

RESULTS: It was numerically established that the air targets are met in the ice arena under the given parameters of operation of the ventilation system, with no moisture condensation on the surface of the ice, and comfortable conditions maintained in the areas where people are present.

CONCLUSION: The modeling of the heat and mass exchange processes in the ice arena room makes it possible to avoid ice damage from moisture condensation as well as ensure the comfort of people present on the ice and in the bleachers.

Keywords

ice arena / temperature fields / humid air / HVAC / ANSYS CFX

Cite this article

Download citation ▾
Ivan A. Burkov, Michail A. Kolosov, Anton A. Zharov, Leonid М. Kolishkin, Nikolay A. Andreev. Mathematical modeling of heat and mass transfer processes of air masses in premises with an ice arena. Refrigeration Technology, 2021, 110(2): 77-84 DOI:10.17816/RF322770

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bellache O, Ouzzane M, Galanis N. Numerical prediction of ventilation patterns and thermal processes in ice rinks. Building and Environment. 2005;40(3):417–426. doi: 10.1016/j.buildenv.2004.08.004

[2]

Bellache O., Ouzzane M., Galanis N. Numerical prediction of ventilation patterns and thermal processes in ice rinks // Building and Environment. 2005. Vol. 40, N 3. P. 417–426. doi: 10.1016/j.buildenv.2004.08.004

[3]

Zhao R, Zhou L, Ma J. CFD design of ventilation system for large underground bus terminal in Macau Barrier Gate. Journal of Wind Engineering and Industrial Aerodynamics. 2018;179:1–13. doi: 10.1016/j.jweia.2018.05.010

[4]

Zhao R., Zhou L., Ma J. CFD design of ventilation system for large underground bus terminal in Macau Barrier Gate // Journal of Wind Engineering and Industrial Aerodynamics. 2018. Vol. 179. P. 1–13. doi: 10.1016/j.jweia.2018.05.010

[5]

Palmowska A, Lipska B. The experimental validation of numerical modeling of the air distribution in the indoor ice rink arena. In: Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering. Barcelona; 2015. Accessed: 09.02.2021. Available from: https://avestia.com/MCM2015_Proceedings/files/papers/HTFF276.pdf

[6]

Palmowska A., Lipska B. The experimental validation of numerical modeling of the air distribution in the indoor ice rink arena // Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering. Paper № 276, P. 276–1 – 276–6, [дата обращения: 09.02.2021] Доступ по ссылке: https://avestia.com/MCM2015_Proceedings/files/papers/HTFF276.pdf

[7]

He H, Wang J, Li S, et al. Temperature Field Simulation of Powder Sintering Process with ANSYS. IOP Conf. Ser.: Mater. Sci. Eng. 2018;324(1). doi: 10.1088/1757-899X/324/1/012008

[8]

H-e H., Wang J., Li S., et al. Temperature Field Simulation of Powder Sintering Process with ANSYS // IOP Conf. Ser.: Mater. Sci. Eng. 2018. Vol. 324, N 1. doi: 10.1088/1757-899X/324/1/012008

[9]

Joudi A, Cehlin M, Svedung H, et al. Numerical and experimental investigation of the influence of infrared reflective interior surfaces on building temperature distributions. Indoor and Built Environment. 2017;26(3):355–367. doi: 10.1177/1420326X15609966

[10]

Joudi A., Cehlin M., Svedung H., et al. Numerical and experimental investigation of the influence of infrared reflective interior surfaces on building temperature distributions // Indoor and Built Environment. 2017. Vol. 26, N 3. P. 355–367. doi: 10.1177/1420326X15609966

[11]

Kobayashi T, Sugita K, Umemiya N, et al. Numerical investigation and accuracy verification of indoor environment for an impinging jet ventilated room using computational fluid dynamics. Building and Environment. 2017;115:251–268. doi: 10.1016/j.buildenv.2017.01.022

[12]

Kobayashi T., Sugita K., Umemiya N., et al. Numerical investigation and accuracy verification of indoor environment for an impinging jet ventilated room using computational fluid dynamics // Building and Environment. 2017. Vol. 115. P. 251–268. doi: 10.1016/j.buildenv.2017.01.022

[13]

Molina-Aiz FD, Fatnassi H, Boulard T, et al. Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses. Computers and Electronics in Agriculture. 2010;72(2):69–86. doi: 10.1016/j.compag.2010.03.002

[14]

Molina-Aiz F.D., Fatnassi H., Boulard T., et al. Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses // Computers and Electronics in Agriculture. 2010. Vol. 72, N 2. P. 69–86. doi: 10.1016/j.compag.2010.03.002

[15]

Moon JH, Lee JW, Jeong CH, et al. Thermal comfort analysis in a passenger compartment considering the solar radiation effect. International Journal of Thermal Sciences. 2016;107:77–88. doi: 10.1016/j.ijthermalsci.2016.03.013

[16]

Moon J.H., Lee J.W., Jeong C.H., et al. Thermal comfort analysis in a passenger compartment considering the solar radiation effect // International Journal of Thermal Sciences. 2016. Vol. 107. P. 77–88. doi: 10.1016/j.ijthermalsci.2016.03.013

[17]

Nardecchia F, Gugliermetti F, Bisegna F. How temperature affects the airflow around a single-block isolated building. Energy and Buildings. (2016) 118, pp. 142–151. doi: 10.1016/j.enbuild.2016.03.003

[18]

Nardecchia F., Gugliermetti F., Bisegna F. How temperature affects the airflow around a single-block isolated building // Energy and Buildings. 2016. Vol. 118. P. 142–151. doi: 10.1016/j.enbuild.2016.03.003

[19]

Nazarian N, Kleissl J. Realistic solar heating in urban areas: Air exchange and street-canyon ventilation. Building and Environment. 2016;95:75–93. doi: 10.1016/j.buildenv.2015.08.021

[20]

Nazarian N., Kleissl J. Realistic solar heating in urban areas: Air exchange and street-canyon ventilation // Building and Environment. 2016. Vol. 95. P. 75–93. doi: 10.1016/j.buildenv.2015.08.021

[21]

Palmowska A, Lipska B. Research on improving thermal and humidity conditions in a ventilated ice rink arena using a validated CFD model. International Journal of Refrigeration. 2018;86:373–387. doi: 10.1016/j.ijrefrig.2017.11.016

[22]

Palmowska A., Lipska B. Research on improving thermal and humidity conditions in a ventilated ice rink arena using a validated CFD model // International Journal of Refrigeration. 2018. Vol. 86. P. 373–387. doi: 10.1016/j.ijrefrig.2017.11.016

[23]

Risberg D, Risberg M, Westerlund L. CFD modelling of radiators in buildings with user-defined wall functions. Applied Thermal Engineering. 2016;94:266–273. doi: 10.1016/j.applthermaleng.2015.10.134

[24]

Risberg D., Risberg M., Westerlund L. CFD modelling of radiators in buildings with user-defined wall functions // Applied Thermal Engineering. 2016. Vol. 94. P. 266–273. doi: 10.1016/j.applthermaleng.2015.10.134

[25]

Rojano F, Bournet P-E, Hassouna M, et al. Computational modelling of thermal and humidity gradients for a naturally ventilated poultry house. Biosystems Engineering. 2016;151:273–285. doi: 10.1016/j.biosystemseng.2016.09.012

[26]

Rojano F., Bournet P.-E., Hassouna M., et al. Computational modelling of thermal and humidity gradients for a naturally ventilated poultry house // Biosystems Engineering. 2016. Vol. 151. P. 273–285. doi: 10.1016/j.biosystemseng.2016.09.012

[27]

Santolini E, Pulvirenti B, Benni S, et al. Numerical study of wind-driven natural ventilation in a greenhouse with screens. Computers and Electronics in Agriculture. 2018;149:41–53. doi: 10.1016/j.compag.2017.09.027

[28]

Santolini E., Pulvirenti B., Benni S., et al. Numerical study of wind-driven natural ventilation in a greenhouse with screens // Computers and Electronics in Agriculture. 2018. Vol. 149. P. 41–53. doi: 10.1016/j.compag.2017.09.027

[29]

Rusakov SV. K raschetu teplovyh i vlazhnostnyh nagruzok ledovyh katkov. Nagruzka ot radiacionnogo perenosa teploty. Nauchnyj zhurnal NIU ITMO. Seriya «Holodil'naya tekhnika i kondicionirovanie». 2014;1. Accessed: 09.03.2021. Available from: http://refrigeration.ihbt.ifmo.ru/file/article/8611.pdf

[30]

Русаков С.В. К расчету тепловых и влажностных нагрузок ледовых катков. Нагрузка от радиационного переноса теплоты // Научный журнал НИУ ИТМО. Серия «Холодильная техника и кондиционирование». 2014. № 1. [дата обращения: 09.03.2021] Доступ по ссылке: http://refrigeration.ihbt.ifmo.ru/file/article/8611.pdf

[31]

Kulik VV, Parkin AN, Navasardyan ES. Numerical Modeling Procedure for Micromachined Cryogenic Cooler Elements Using ANSYS Fluent. Software and Viscous Flow in a Small-Diameter Channel with Heat Transfer as an Example. Chemical and Petroleum Engineering. 2016;52(7–8):531–538. doi: 10.1007/s10556-016-0227-0

[32]

Kulik V.V., Parkin A.N., Navasardyan E.S. Numerical Modeling Procedure for Micromachined Cryogenic Cooler Elements Using ANSYS Fluent. Software and Viscous Flow in a Small-Diameter Channel with Heat Transfer as an Example // Chemical and Petroleum Engineering. 2016. Vol. 52, N 7-8. P. 531–538. doi: 10.1007/s10556-016-0227-0

[33]

Aleksandrov AA, Arkharov IA, Navasardyan ES, et al. Modeling of Processes in Microcryogenic Gas Cooler. Chemical and Petroleum Engineering. 2016;51(9–10):649–655. doi: 10.1007/s10556-016-0101-0

[34]

Aleksandrov A.A., Arkharov I.A., Navasardyan E.S., et al. Modeling of Processes in Microcryogenic Gas Cooler // Chemical and Petroleum Engineering. 2016. Vol. 51, N 9–10. P. 649–655. doi: 10.1007/s10556-016-0101-0

[35]

Al-Zoubi A, Beilke J, Korchagova VN, Strizhak SV, Kraposhin MV. Comparison of the performance of open-source and commercial CFD packages for simulating supersonic compressible jet flows. In: Proceedings - 2018 Ivannikov Memorial Workshop, IVMEM 2018. Yerevan: IEEE; 2018. doi: 10.1109/IVMEM.2018.00019

[36]

Al-Zoubi A., Beilke J., Korchagova V.N., et al. Comparison of the performance of open-source and commercial CFD packages for simulating supersonic compressible jet flows // Proceedings – 2018 Ivannikov Memorial Workshop, IVMEM 2018. Yerevan: IEEE, 2018. doi: 10.1109/IVMEM.2018.00019

[37]

Burkov IA, Zherdev AA, Pushkarev AV, et al. Simulation of fluid hypothermia for robot-assisted prostatectomy. Journal of Enhanced Heat Transfer. 2018;25(2):121–136. doi: 10.1615/JEnhHeatTransf.2018026370

[38]

Burkov I.A., Zherdev A.A., Pushkarev A.V., et al. Simulation of fluid hypothermia for robot-assisted prostatectomy // Journal of Enhanced Heat Transfer. 2018. Vol. 25, N 2. P. 121–136. doi: 10.1615/JEnhHeatTransf.2018026370

[39]

Sørensen, DN, Voigt LK. Modelling flow and heat transfer around a seated human body by computational fluid dynamics. Building and Environment. 2003;38(6):753–762. doi: 10.1016/S0360-1323(03)00027-1

[40]

Sørensen D.N., Voigt L.K. Modelling flow and heat transfer around a seated human body by computational fluid dynamics // Building and Environment. 2003. Vol. 38, N 6. P. 753–762. doi: 10.1016/S0360-1323(03)00027-1

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

54

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/