Development of highly efficient centrifugal-compressor series for turbocooling machines
Aleksei M. Danilishin , Yuri V. Kozhukhov
Refrigeration Technology ›› 2022, Vol. 111 ›› Issue (4) : 263 -271.
Development of highly efficient centrifugal-compressor series for turbocooling machines
BACKGROUND: Currently, demand for centrifugal-compressor stages with a high pressure ratio is increasing. Such requirements prompt the use of high pressure stages with high circumferential speeds of u2>300 m/s, which leads to increased levels of conditional Mach number and consequently to pressure losses. Work for stage efficiency increases the energy consumption, and the cooling capacity of refrigerating machine increases.
AIMS: This study aims to develop a series of 10 highly efficient high-head model centrifugal compressors with pressure ratio Πc=2.0.
MATERIALS AND METHODS: A complex calculation technique developed by the authors is used to increase the efficiency of centrifugal-compressor stages. The method consists of sequential execution of four stages: gas-dynamic calculation, profiling, three-dimensional viscous calculation, and multiparametric optimization.
RESULTS: A series of model centrifugal compressors has been designed with the following range-of-design-mode parameters: conditional flow coefficient is 0,035<Φ<0,12; theoretical head coefficient ψt.d.=0,74; and conditional Mach number is 0,93<Mu<0,96. The estimated isentropic efficiency of the developed centrifugal compressors ranges from 77% to 84% depending on the flow rate of the stage.
CONCLUSIONS: A series of 10 highly efficient centrifugal-compressor flow parts has been developed, which can be used in modern centrifugal-compressor gas-dynamic projects.
centrifugal-compressor / turbo expander / flow part / multiparameter optimization
| [1] |
NOVATEK launched a small-tonnage LNG plant in the Chelyabinsk region. [internet] [accessed 04.12.2022] Available from: https://neftegaz.ru/news/gas-stations/627753-novatek-zapustil-malotonnazhnyy-spg-zavod-v-chelyabinskoy-oblasti/ |
| [2] |
НОВАТЭК запустил малотоннажный СПГ-завод в Челябинской области. [internet] Дата обращения 04.12.2022. Режим доступа: https://neftegaz.ru/news/gas-stations/627753-novatek-zapustil-malotonnazhnyy-spg-zavod-v-chelyabinskoy-oblasti/ |
| [3] |
Khetagurov VA, Slugin PP, Vorontsov MA. Experience and prospects for the use of turbo-expander units at field technological facilities of the Russian gas industry. Gazovaya promyshlennost. 2018;11(777):14–22. |
| [4] |
Хетагуров В.А., Слугин П.П., Воронцов М.А. и др. Опыт и перспективы применения турбодетандерных агрегатов на промысловых технологических объектах газовой промышленности России // Газовая промышленность. 2018. № 11(777). P. 14–22. |
| [5] |
Danilishin AM, Kozhukhov YuV, Simonov AM. A complex method for computer-aided design of two-link stages with an axial-radial impeller of centrifugal compressors. Vestnik Mezhdunarodnoy akademii kholoda. 2020;1:3–11. doi: 10.17586/1606-4313-2020-19-1-3-11 |
| [6] |
Данилишин А.М., Кожухов Ю.В., Симонов А.М. Комплексный метод автоматизированного проектирования двухзвенных ступеней с осерадиальным рабочим колесом центробежных компрессоров // Вестник Международной академии холода. 2020. № 1. С. 3-11. doi: 10.17586/1606-4313-2020-19-1-3-11 |
| [7] |
Bonaiuti D, Zangeneh M. On the coupling of inverse design and optimization techniques for the multiobjective, multipoint design of turbomachinery blades. J. Turbomach. 2009;131(2):021014. doi: 10.1115/1.2950065 |
| [8] |
Bonaiuti D., Zangeneh M. On the coupling of inverse design and optimization techniques for the multiobjective, multipoint design of turbomachinery blades // J. Turbomach. 2009. Vol. 131, N 2. P. 021014. doi: 10.1115/1.2950065 |
| [9] |
Simonov AM. Investigation of the efficiency and optimal design of high-pressure centrifugal compressor stages. In: Proceedings of the scientific school of compressor engineering of St. Petersburg State Polytechnical University. Ed. prof. Galerkina Yu.B. Saint Petersburg: SPbGPU; 2010:164–188. |
| [10] |
Симонов А.М. Исследование эффективности и оптимальное проектирование высоконапорных центробежных компрессорных ступеней // Труды научной школы компрессоростроения СПбГПУ. Под ред. проф. Галеркина Ю.Б. Санкт-Петербург: СПбГПУ, 2010. С. 164 – 188. |
| [11] |
Hildebrandt A, Ceyrowsky T. One-dimensional and three- dimensional design strategies for pressure slope optimization of high-flow transonic centrifugal compressor impellers. J. Turbomach. 2019;141(5):051002. doi: 10.1115/1.4041907 |
| [12] |
Hildebrandt A., Ceyrowsky T. One-dimensional and three- dimensional design strategies for pressure slope optimization of high-flow transonic centrifugal compressor impellers // J. Turbomach. 2019. Vol. 141, N 5. P. 051002. doi: 10.1115/1.4041907 |
| [13] |
Stuart C, Spence S, Filsinger D, et al. Characterizing the influence of impeller exit recirculation on centrifugal compressor work input. J. Turbomach. 2018;140(1):011005. doi: 10.1115/1.4038120 |
| [14] |
Stuart C., Spence S., Filsinger D., et al. Characterizing the influence of impeller exit recirculation on centrifugal compressor work input // J. Turbomach. 2018. Vol. 140, N 1. P. 011005. doi: 10.1115/1.4038120 |
| [15] |
Cousins WT, Yu L, Sishtla V, et al. Analytical and experimental results of a novel single-stage centrifugal compressor with economizer injection. In: Proceedings of the ASME Turbo Expo. June 11–15, 2018. Oslo, Norway. Vol. 2B: Turbomachinery. Oslo: ASME; 2018. doi: 10.1115/GT2018-76967 |
| [16] |
Cousins W.T., Yu L., Sishtla V., et al. Analytical and experimental results of a novel single-stage centrifugal compressor with economizer injection // Proceedings of the ASME Turbo Expo. June 11–15, 2018. Oslo, Norway. Vol. 2B: Turbomachinery. Oslo: ASME, 2018. doi: 10.1115/GT2018-76967 |
| [17] |
Andersen MR, Gu F, MacLeod PD. Application and validation of CFD in a turbomachinery design system. In: American Society of Mechanical Engineers, Process Industries Division (Publication) PID. 2003. November 15–21, 2003 Washington, DC, USA. Washington: ASME; 2003. doi: 10.1115/IMECE2003-55217 |
| [18] |
Andersen M.R., Gu F., MacLeod P.D. Application and validation of CFD in a turbomachinery design system // American Society of Mechanical Engineers, Process Industries Division (Publication) PID. 2003. November 15–21, 2003 Washington, DC, USA. Washington: ASME, 2003. doi: 10.1115/IMECE2003-55217 |
| [19] |
Rinaldi E, Pecnik R, Colonna P. Steady State CFD Investigation of a Radial Compressor Operating With Supercritical CO2. In: Vol. 8: Supercritical CO2 Power Cycles; Wind Energy; Honors and Awards. American Society of Mechanical Engineers. June 3–7, 2013 San Antonio, Texas, USA. San Antonio: ASME; 2013. doi: 10.1115/GT2013-94580 |
| [20] |
Rinaldi E., Pecnik R., Colonna P. Steady State CFD Investigation of a Radial Compressor Operating With Supercritical CO2 // Volume 8: Supercritical CO2 Power Cycles; Wind Energy; Honors and Awards. American Society of Mechanical Engineers. June 3–7, 2013 San Antonio, Texas, USA. San Antonio: ASME, 2013. doi: 10.1115/GT2013-94580 |
| [21] |
Li X, Liu Z, Lin Y. Multipoint and Multiobjective Optimization of a Centrifugal Compressor Impeller Based on Genetic Algorithm. Math. Probl. Eng. 2017;2017. doi: 10.1155/2017/6263274 |
| [22] |
Li X., Liu Z., Lin Y. Multipoint and Multiobjective Optimization of a Centrifugal Compressor Impeller Based on Genetic Algorithm // Math. Probl. Eng. 2017. Vol. 2017. doi: 10.1155/2017/6263274 |
| [23] |
Guo S, Duan F, Tanget H, et al. Multi-objective optimization for centrifugal compressor of mini turbojet engine. Aerosp. Sci. Technol. 2014;39:414-425. doi: 10.1016/j.ast.2014.04.014 |
| [24] |
Guo S., Duan F, Tanget H., et al. Multi-objective optimization for centrifugal compressor of mini turbojet engine // Aerosp. Sci. Technol. 2014. Vol. 39. P. 414-425. doi: 10.1016/j.ast.2014.04.014 |
| [25] |
Kang HS, Kim YJ. A study on the multi-objective optimization of impeller for high-power centrifugal compressor. Int. J. Fluid Mach. Syst. 2016;9(2):143-149 doi: 10.5293/IJFMS.2016.9.2.143 |
| [26] |
Kang H.S., Kim Y.J. A study on the multi-objective optimization of impeller for high-power centrifugal compressor // Int. J. Fluid Mach. Syst. 2016. Vol. 9, N 2. P. 143-149 doi: 10.5293/IJFMS.2016.9.2.143 |
| [27] |
Guo Z, Song L, Zhou Z, et al. Multi-Objective Aerodynamic Optimization Design and Data Mining of a High Pressure Ratio Centrifugal Impeller. J. Eng. Gas Turbines Power. 2015;137(9):092602. doi: 10.1115/1.4029882 |
| [28] |
Guo Z., Song L., Zhou Z., et al. Multi-Objective Aerodynamic Optimization Design and Data Mining of a High Pressure Ratio Centrifugal Impeller // J. Eng. Gas Turbines Power. 2015. Vol. 137, N 9. P. 092602. doi: 10.1115/1.4029882 |
| [29] |
Kim JH, Choi JH, Kim KY. Design optimization of a centrifugal compressor impeller using radial basis neural network method. In: Proceedings of the ASME Turbo Expo. June 8–12, 2009. Orlando, Florida, USA. Orlando: ASME; 2009:443-451. doi: 10.1115/GT2009-59666 |
| [30] |
Kim J.H., Choi J.H., Kim K.Y. Design optimization of a centrifugal compressor impeller using radial basis neural network method // Proceedings of the ASME Turbo Expo. June 8–12, 2009. Orlando, Florida, USA. Orlando: ASME, 2009. P. 443–451. doi: 10.1115/GT2009-59666 |
| [31] |
Danilishin АМ, Kozhukhov YuV. Numerical simulation of turbulent flow in high-head impeller of centrifugal compressor. The Journal Omsk Scientific Bulletin. Series «Aviation-Rocket and Power Engineering». 2022;6(2):59–70. doi: 10.25206/2588-0373-2022-6-2-59-70 |
| [32] |
Данилишин А.М., Кожухов Ю.В. Численное моделирование турбулентного течения в высоконапорном осерадиальном рабочем колесе центробежного компрессора холодильных машин // Омский научный вестник. Серия «Авиационно-ракетное и энергетическое машиностроение» 2022. C. 59–70. doi: 10.25206/2588-0373-2022-6-2-59-70 |
Eco-Vector
/
| 〈 |
|
〉 |