The Problem of Utilization of Liquefied Natural Gas Vapor at Large-scale LNG Plants
Aleksandr Yu. Baranov , Elena S. Seredenko , Lev V. Ivanov , Anna V. Vasilenok
Refrigeration Technology ›› 2022, Vol. 111 ›› Issue (3) : 141 -149.
The Problem of Utilization of Liquefied Natural Gas Vapor at Large-scale LNG Plants
The liquefied natural gas (LNG) is stored under low overpressure in a saturated state in large-capacity tanks with multilayer thermal insulation. Owing to the input of heat from the environment through thermal insulation, LNG is continuously evaporated. Since natural gas is a multicomponent mixture, LNG vapors are enriched with its low-boiling components, then the supply of heat from the environment reduces the amount of liquid in the reservoir and changes its chemical composition. Similar phenomena occur during LNG transportation. The present paper deals with the problem of LNG vapor utilization during its storage and transportation. Information is presented on the causes of the LNG vapor formation (boil-off gas) and methods for its disposal during storage and transportation to consumers. A numerical experiment was performed based on the data of LNG storage in large-capacity storage facilities at the Yamal LNG plant. The technique consists of the estimation of material flows toward the system of accumulation and extradition of LNG. The results show that the vapor flow generated from the inflow of new LNG portions into the storage significantly exceeds that generated from the heat supply from the environment.
liquefied natural gas / evaporation / boil-off gas / utilization of LNG vapors / storage / transportation
| [1] |
LNG Custody Transfer Handbook, 3rd Ed. v. 3.01. Paris: GIIGNL; 2011. |
| [2] |
LNG Custody Transfer Handbook, 3rd Ed. v. 3.01. Paris: GIIGNL, 2011. |
| [3] |
Sedlaczek R. Boil-Off in Large and Small Scale LNG Chains. Diploma Thesis. Faculty of Engineering Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim; 2008. |
| [4] |
Sedlaczek R. Boil-Off in Large and Small Scale LNG Chains. Diploma Thesis. Faculty of Engineering Science and Technology, Department of Petroleum Engineering and Applied Geophysics, Trondheim, 2008. |
| [5] |
GOST R 56835-2015. Liquefied natural gas. Boil-off gas of liquefied natural gas production. Determination of composition by gas chromatography method. Available at: https://docs.cntd.ru/document/1200129493 [Аccessed 25.06.2022] |
| [6] |
ГОСТ Р 56835-2015. Газ природный сжиженный. Газ отпарной производства газа природного сжиженного. Режим доступа: https://docs.cntd.ru/document/1200129493 Дата обращения: 25.06.2022 |
| [7] |
Seredenko ES, Pakhomov OV, Baranov AYu. Mathematical model of liquefied natural gas evaporation and analysis of original composition effect on evaporation speed. Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2020;20(4):603–610 (In Russ). doi: 10.17586/2226-1494-2020-20-4-603-610 |
| [8] |
Середенко Е.С., Пахомов О.В., Баранов А.Ю. Математическая модель испарения сжиженного природного газа и анализ влияния исходного состава на скорость испарения // Научно-технический вестник информационных технологий, механики и оптики. 2020. Т. 20. № 4 (128). С. 603–610. doi: 10.17586/2226-1494-2020-20-4-603-610 |
| [9] |
MAN Diesel A/S- LNG Carriers with ME-GI Engine and High Pressure Gas Supply System, 2009. |
| [10] |
LNG Carriers with ME-GI Engine and High Pressure Gas Supply System. [Аccessed 25.06.2022]. Available at: http://www.mandieselturbo.com/files/news/filesof8121/5510-002600ppr.indd.pdf |
| [11] |
LNG Carriers with ME-GI Engine and High Pressure Gas Supply System. [дата обращения: 25.06.2022]. Доступ по ссылке: http://www.mandieselturbo.com/files/news/filesof8121/5510-002600ppr.indd.pdf |
| [12] |
McGuire JJ, White B. Liquefied Gas Handling Principles on Ships and in Terminals, London: Witherby & Co Ltd; 2000. |
| [13] |
McGuire J.J. and White B. Liquefied Gas Handling Principles on Ships and in Terminals, London: Witherby & Co Ltd, 2000. |
| [14] |
Dundović Č., Basch D., Dobrota Đ. Simulation Method for Evaluation of LNG Receiving Terminal Capacity. Promet – Traffic and Transportation. 2009;21(2):103–112. doi: https://doi.org/10.7307/ptt.v21i2.216 |
| [15] |
Dundović Č., Basch D., Dobrota Đ. Simulation Method for Evaluation of LNG Receiving Terminal Capacity // Promet – Traffic and Transportation. 2009. Vol. 21, Iss. 2. P. 103–112. doi: https://doi.org/10.7307/ptt.v21i2.216 |
| [16] |
Gas tankers [Internet]. Agency Neftegas.ru [Аccessed 25.06.2022]. Available at: https://neftegaz.ru/tech-library/suda-neftegazovye-i-morskoe-oborudovanie-dlya-bureniya/142491-tankery-gazovozy/ |
| [17] |
Танкеры-газовозы. [Internet]. Агентство Neftegas.ru [дата обращения: 25.06.2022]. Доступ по ссылке: https://neftegaz.ru/tech-library/suda-neftegazovye-i-morskoe-oborudovanie-dlya-bureniya/142491-tankery-gazovozy/ |
| [18] |
Kostylev II, Ovsyannikov MK. Marine transport of liquefied gas. St.-Petersburg: Adm. Mak. St. Mar. Akad. Publ.; 2009. (In Russ). |
| [19] |
Костылев И.И., Овсянников М.К. Морская транспортировка сжиженного газа. СПБ: Изд-во ГМА им. адм. С.О. Макарова, 2009. |
| [20] |
Guidebook to Gas Interchangeability and Gas Quality, British Petrol and International Gas Union; 2011. |
| [21] |
British Petrol and International Gas Union, Guidebook to Gas Interchangeability and Gas Quality, 2011. |
| [22] |
Dimopoulos GG, Frangopoulos CA. Thermoeconomic Simulation of Marine Energy Systems for a Liquefied Natural Gas Carrier. International Journal of Thermodynamics. 2008;11(4): 195–201. |
| [23] |
Dimopoulos G.G., Frangopoulos C.A. Thermoeconomic Simulation of Marine Energy Systems for a Liquefied Natural Gas Carrier // International Journal of Thermodynamics. 2008. Vol. 11, Iss. 4. P. 195–201. |
| [24] |
Kostylev II. Liquefied natural gas as marine fuel: problems and solution prospects. Transport of the Russian Federation. 2018;2(75):74–78. (In Russ). |
| [25] |
Костылев И.И., Сжиженный природный газ как судовое топливо: проблемы и перспективы их решения // Транспорт Российской Федерации. 2018. № 2 (75), С. 74–78. |
| [26] |
Dorokhov AF, Apkarov IA, Hoan Koang Luong. Features of the use of gaseous fuels in marine power plants. Vestnik AGTU. Series: Marine engineering and Technology. 2012;(2):70–75. (In Russ). |
| [27] |
Дорохов А.Ф., Апкаров И.А., Хоан Коанг Лыонг. Особенности применения газообразных топлив в судовых энергетических установках // Вестник Астраханского государственного технического университета. Серия: Морская техника и технология. 2012. № 2. C. 70–75. |
| [28] |
Faruque Hasan MM, Zheng Minghan A, Karimi IA. Minimizing Boil-Off Losses in Liquefied Natural Gas Transportation. Industrial Engineering Chemistry Research. 2009;48(21):9571–9580. doi: https://doi.org/10.1021/ie801975q |
| [29] |
Faruque Hasan M.M, Zheng Minghan A. and Karimi I.A. Minimizing Boil-Off Losses in Liquefied Natural Gas Transportation // Industrial Engineering Chemistry Research. 2009. Vol. 48, N. 21. P. 9571–9580. doi: https://doi.org/10.1021/ie801975q |
Baranov A.Y., Seredenko E.S., Ivanov L.V., Vasilenok A.V.
/
| 〈 |
|
〉 |