Thin-Film Steam Generators of Binary Geothermal Power Plants

Ivan I. Gogonin

Refrigeration Technology ›› 2022, Vol. 111 ›› Issue (2) : 97 -104.

PDF
Refrigeration Technology ›› 2022, Vol. 111 ›› Issue (2) : 97 -104. DOI: 10.17816/RF107957
Original Study Articles
research-article

Thin-Film Steam Generators of Binary Geothermal Power Plants

Author information +
History +
PDF

Abstract

BACKGROUND: The cost of electricity generated by a geothermal power plant is twice as low as that of energy sources. However, at present, geothermal power plants mainly use submersible-type apparatus, and the most promising thin-film steam generators have not been sufficiently investigated.

AIM: The purpose of this work is to show the advantages of a thin–film steam generator in comparison with an immersion type heat exchanger.

MATERIALS AND METHODS: The basis for this publication is the experimental research of the author and the analysis of data cited in the literature on heat exchange during the boiling of a film irrigating a bundle of finned pipes.

CONCLUSIONS: The use of thin-film steam generators will significantly reduce the amount of expensive refrigerant in a geothermal power plant circuit. With a cocurrent flow of steam and liquid, the ingress of large drops onto the surface of a superheater tubes is excluded. The use of finned tubes in a bundle with optimal finning parameters ensures a uniform irrigation. The artificial centers of vaporization of the finned tube repeatedly intensify the heat transfer during film boiling, which ultimately leads to a reduction in the weight and dimensions of the superheater.

Keywords

geothermal power plant / thin-film steam generator / heat transfer during film evaporation and boiling / rough bundle of finned tubes

Cite this article

Download citation ▾
Ivan I. Gogonin. Thin-Film Steam Generators of Binary Geothermal Power Plants. Refrigeration Technology, 2022, 111(2): 97-104 DOI:10.17816/RF107957

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Butuzov VA, Tomarov GV. Geothermal energy of Kamchatka. Teploenergetika. 2020;11:50–63. doi: 10.1134/S0040363620110041 (in Russ).

[2]

Бутузов В.А., Томаров Г.В. Геотермальная энергетика Камчатки // Теплоэнергетика. 2020. № 11. С. 50–63. doi: 10.1134/S0040363620110041

[3]

Moskvicheva VN, Petin YuM. Results of experimental work at the Paratunskaya freon power plant. In: The Use of Freons in Power Plants. Novosibirsk: IT SO AN SSSR; 1973. P:3–12. (In Russ).

[4]

Москвичева В.Н., Петин Ю.М. Результаты экспериментальных работ на Паратуньской фреоновой электростанции. В кн.: Использование фреонов в энергетических установках. Сборник трудов. Новосибирск: ИТ СО АН СССР, 1973. С. 3–12.

[5]

Kutepov AM, Sterman LS, Styushin NG. Hydrodynamics and Heat Transfer during Vaporization. Moscow: Vysshaya shkola; 1986. (in Russ).

[6]

Кутепов А.М., Стерман Л.С., Стюшин Н.Г. Гидродинамика и теплообмен при парообразовании. М.: Высшая школа, 1986. 448 с.

[7]

Kutateladze SS, Sorokin YuL. On the hydrodynamic stability of some gas-liquid systems. In: Problems of heat transfer and hydraulics of two-phase media. Moscow, Leningrad: GEI; 1961. P. 315–344. (In Russ).

[8]

Кутателадзе С.С., Сорокин Ю.Л. О гидродинамической устойчивости некоторых газожидкостных систем. В кн.: Вопросы теплоотдачи и гидравлики двухфазных сред. М.–Л.: ГЭИ, 1961. С. 315–344.

[9]

Maltsev LI, Balakleevsky YuI. Flat liquid jets. Teplofizika i aeromekhannika. 2000;3:217–224. (In Russ).

[10]

Мальцев Л.И., Балаклеевский Ю.И. Плоские жидкие струи // Теплофизика и аэромеханника, 2000. № 2. С. 217–224.

[11]

Roques J-F, Thomee JR. Falling Films on Arrays of Horizontal Tubes with R134a, Part I: Boiling Heat Transfer Results for Four Types of Tubes. Heat Transfer Engin. 2007;28(5):398–414. doi: 10.1080/01457630601163736

[12]

Roques J.-F., Thomee J.R. Falling Films on Arrays of Horizontal Tubes with R134a, Part I: Boiling Heat Transfer Results for Four Types of Tubes // Heat Transfer Eng. 2007. Vol. 28, N. 5. P. 398–414. doi: 10.1080/01457630601163736

[13]

Fujita J, Tsatsui M. Experimental and analytical study of evaporation heat transfor in falling films on horizontal tubes. In: Proc. of 10th Int. Heat Transter Conf. Vol. 6. Brighton UK. 1994. P:175–180. doi: 10.1615/IHTC10.5470

[14]

Fujita J., Tsatsui M. Experimental and analytical study of evaporation heat transfor in falling films on horizontal tubes // Proc. of 10th Int. Heat Transter Conf. Vol. 6. Brighton UK. 1994. P. 175–180. doi: 10.1615/IHTC10.5470

[15]

Gogonin II, Kabov OA. Influence of liquid capillary retention on heat transfer during condensation on finned tubes. Izvestiya SO AN SSSR, ser. tekh. nauk. 1983;2(8)3-8. (In Russ).

[16]

Гогонин И.И., Кабов О.А. Влияние капиллярного удерживания жидкости на теплообмен при конденсации на оребренных трубах // Известия СОАН СССР. Cер. тех. наук. 1983. Вып. 2. № 8. С. 3–8.

[17]

Bressler RJ, Wyatt PW. Surface wetting through Capillary Grooves. ASME J. Heat and Mass and Transfer. 1970;92(1):126–132. doi: 10.1115/1.3449605

[18]

Bressler R.J., Wyatt P.W. Surface wetting through Capillary Grooves // ASME J. Heat and Mass Transfer. 1970. Vol. 92, N. 1. P. 126–132. doi: 10.1115/1.3449605

[19]

Akesjö A, Gourdon M, Vamling L, et al. Experimental and numerical study of heat transfer in a large-scale vertical falling film pilot unit. Int. J. Heat and Mass Transfer. 2018;125:53–65. doi: 10.1016/j.ijheatmasstransfer.2018.04.052

[20]

Akesjö A., Gourdon M., Vamling L., et al. Experimental and numerical study of heat transfer in a large-scale vertical falling film pilot unit // Int. J. Heat and Mass Transfer. 2018. Vol. 125. P. 53–65. doi: 10.1016/j.ijheatmasstransfer.2018.04.052

[21]

Isachenko VP, Osipova VA, Sukomel AS. Heat Transfer. Moscow: Energoizdat; 1980. (In Russ).

[22]

Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. М.: Энергоиздат, 1980. 417 c.

[23]

Gogonin II. Heat Transfer at Nucleate Boiling. Novosibirsk: Nauka SB RAS; 2018. (In Russ).

[24]

Гогонин И.И. Теплообмен при пузырьковом кипении. Новосибирск: Изд-во Наука СО РАН, 2018. 225 с.

[25]

Wen T, Lu Li, He W, Min Y Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review. Appl. Energy. 2020;211:114473. doi: 10.1016/j.apenergy.2019.114473

[26]

Wen T., Lu Li, He W., Min Y. Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review // Appl. Energy. 2020. Vol. 211. P. 114473. doi: 10.1016/j.apenergy.2019.114473

[27]

Gogonin II. Experimental Studies of the influence of hydrodynamics on heat transter at evaporation and boiling of film irrigating a bundle of horizontal finned tubes. J. Phys.: Conf. Ser. 2020;1565(1):012049. doi: 10.1088/1742-6596/1565/1/012049

[28]

Gogonin I.I. Experimental Studies of the influence of hydrodynamics on heat transter at evaporation and boiling of film irrigating a bundle of horizontal finned tubes // J. Phys.: Conf. Ser. 2020. Vol. 1565(1). P. 012049. doi: 10.1088/1742-6596/1565/1/012049

[29]

Kuznetsov DV, Pavlenko AN, Chernyavskiy AN, Radyuk AA. Study of the effect of three-dimensional capillary-porous coatings with various microstructural parameters on heat transfer and critical heat flux at pool boiling of nitrogen. J. Phys.: Conf. Ser. 2020;1677:012089. doi: 10.1088/1742-6596/1677/1/012089

[30]

Kuznetsov D.V., Pavlenko A.N., Chernyavskiy A.N., Radyuk A.A. Study of the effect of three-dimensional capillary-porous coatings with various microstructural parameters on heat transfer and critical heat flux at pool boiling of nitrogen // J. Phys.: Conf. Ser. 2020. Vol. 1677. P. 012089. doi: 10.1088/1742-6596/1677/1/012089

[31]

Kuznetsov DV, Pavlenko AN, Radyuk AA, et al. Features of heat transfer during pool boiling of nitrogen on surfaces with capillary-porous coatings of various thicknesses. J. Engin. Thermophysics. 2020;29(3):375–387. doi: 10.1134/S1810232820030017

[32]

Kuznetsov D.V., Pavlenko A.N., Radyuk A.A., et al. Features of heat transfer during pool boiling of nitrogen on surfaces with capillary-porous coatings of various thicknesses // J. Engin. Thermophysics. 2020. Vol. 29, N. 3. P. 375-387. doi: 10.1134/S1810232820030017

[33]

Kuznetsov DV, Pavlenko AN, Volodin OA. Effect of structuring by deformational cutting on heat transfer and dynamics of transient cooling processes with liquid film flowing onto a copper plate. J. Engin. Thermophysics. 2020;29(4):531–541. doi: 10.1134/S1810232820040013

[34]

Kuznetsov D.V., Pavlenko A.N., Volodin O.A. Effect of structuring by deformational cutting on heat transfer and dynamics of transient cooling processes with liquid film flowing onto a copper plate // J. Engin. Thermophysics. 2020. Vol. 29, N. 4. P. 531–541. doi: 10.1134/S1810232820040013

[35]

Moiseev MI, Fedoseev A, Shugaev MV, Surtaev AS. Hybrid thermal lattice boltzmann model for boiling heat transfer on surfaces with different wettability. Interfacial Phenomena and Heat Transfer. 2020;8(1):81–91. doi: 10.1615/InterfacPhenomHeatTransfer.2020033929

[36]

Moiseev M.I., Fedoseev A., Shugaev M.V., Surtaev A.S. Hybrid thermal lattice boltzmann model for boiling heat transfer on surfaces with different wettability // Interfacial Phenomena and Heat Transfer. 2020. Vol. 8, N. 1. P. 81–91. doi: 10.1615/InterfacPhenomHeatTransfer.2020033929

[37]

Gogonin II. The effect of artificial vaporization centers on heat exchange during boiling of the film irrigating a bundle of horizontal finned pipes. Thermophys. Aeromech. 2021;28(5):697–702. doi: 10.1134/S0869864321050103

[38]

Gogonin I.I. The effect of artificial vaporization centers on heat exchange during boiling of the film irrigating a bundle of horizontal finned pipes // Thermophys. Aeromech. 2021. Vol. 28, N. 5. P. 697–702. doi: 10.1134/S0869864321050103

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/