Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants

Lei Yang, Xiaohui Zhang, Liren Wang, Shuming Yin, Biyun Zhu, Ling Xie, Qiuhui Duan, Huiqiong Hu, Rui Zheng, Yu Wei, Liangyue Peng, Honghui Han, Jiqin Zhang, Wenjuan Qiu, Hongquan Geng, Stefan Siwko, Xueli Zhang, Mingyao Liu, Dali Li

PDF(1762 KB)
PDF(1762 KB)
Protein Cell ›› 2018, Vol. 9 ›› Issue (9) : 814-819. DOI: 10.1007/s13238-018-0568-x
LETTER
LETTER

Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants

Author information +
History +

Cite this article

Download citation ▾
Lei Yang, Xiaohui Zhang, Liren Wang, Shuming Yin, Biyun Zhu, Ling Xie, Qiuhui Duan, Huiqiong Hu, Rui Zheng, Yu Wei, Liangyue Peng, Honghui Han, Jiqin Zhang, Wenjuan Qiu, Hongquan Geng, Stefan Siwko, Xueli Zhang, Mingyao Liu, Dali Li. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell, 2018, 9(9): 814‒819 https://doi.org/10.1007/s13238-018-0568-x

References

[1]
Frischmeyer PA, van Hoof A, O’Donnell K, Guerrerio AL, Parker R, Dietz HC (2002) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295:2258–2261. https://doi.org/10.1126/science.1067338
CrossRef Google scholar
[2]
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551:464–471. https://doi.org/10.1038/nature24644
CrossRef Google scholar
[3]
Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33:985–989. https://doi.org/10.1038/nbt.3290
CrossRef Google scholar
[4]
Keeling KM, Xue X, Gunn G, Bedwell DM (2014) Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet 15:371–394. https://doi.org/10.1146/annurev-genom-091212-153527
CrossRef Google scholar
[5]
Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK (2015a) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33:1293–1298. https://doi.org/10.1038/nbt.3404
CrossRef Google scholar
[6]
Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh J-RJ (2015b) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485. https://doi.org/10.1038/nature14592
CrossRef Google scholar
[7]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424. https://doi.org/10.1038/nature17946
CrossRef Google scholar
[8]
Kroos MA, Kirschner J, Gellerich FN, Hermans MMP, Van der Ploeg AT, Reuser AJJ, Korinthenberg R (2004) A case of childhood Pompe disease demonstrating phenotypic variability of p. Asp645Asn. Neuromuscul Disord 14:371–374. https://doi.org/10.1016/j.nmd.2004.02.012
CrossRef Google scholar
[9]
Li X, Wang Y, Liu Y, Yang B, Wang X, Wei J, Lu Z, Zhang Y, Wu J, Huang X (2018) Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol 36:324–327. https://doi.org/10.1038/nbt.4102
CrossRef Google scholar
[10]
Liu Z, Lu Z, Yang G, Yang G, Li G, Feng S, Liu Y, Li J, Yu W, Zhang Y (2018) Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nat Commun 9:2338. https://doi.org/10.1038/s41467-018-04768-7
CrossRef Google scholar
[11]
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. https://doi.org/10.1126/science.aaf8729
CrossRef Google scholar
[12]
Ryu S-M, Koo T, Kim K, Lim K, Baek G, Kim S-T, Kim HS, Kim D, Lee H, Chung E (2017) Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. https://doi.org/10.1038/nbt.4148
CrossRef Google scholar
[13]
Shao Y, Wang L, Guo N, Wang S, Yang L, Li Y, Wang M, Yin S, Han H, Zeng L (2018) Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats. J Biol Chem. https://doi.org/10.1074/jbc.RA117.000347
CrossRef Google scholar
[14]
Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. https://doi.org/10.1146/annurev-biochem-060815-014607
CrossRef Google scholar
[15]
Zhou C, Zhang M, Wei Y, Sun Y, Sun Y, Pan H, Yao N, Zhong W, Li Y, Li W (2017) Highly efficient base editing in human tripronuclear zygotes. Protein Cell 8(10):772–775
CrossRef Google scholar

RIGHTS & PERMISSIONS

2018 The Author(s)
AI Summary AI Mindmap
PDF(1762 KB)

Accesses

Citations

Detail

Sections
Recommended

/