Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity

Xiaojuan Chen, Kai Wang, Yaling Xing, Jian Tu, Xingxing Yang, Qian Zhao, Kui Li, Zhongbin Chen

PDF(2246 KB)
PDF(2246 KB)
Protein Cell ›› 2014, Vol. 5 ›› Issue (12) : 912-927. DOI: 10.1007/s13238-014-0104-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity

Author information +
History +

Abstract

Autophagy plays important roles in modulating viral replication and antiviral immune response. Coronavirus infection is associated with the autophagic process, however, little is known about the mechanisms of autophagy induction and its contribution to coronavirus regulation of host innate responses. Here, we show that the membrane-associated papain-like protease PLP2 (PLP2-TM) of coronaviruses acts as a novel autophagyinducing protein. Intriguingly, PLP2-TM induces incomplete autophagy process by increasing the accumulation of autophagosomes but blocking the fusion of autophagosomes with lysosomes. Furthermore, PLP2-TM interacts with the key autophagy regulators, LC3 and Beclin1, and promotes Beclin1 interaction with STING, the key regulator for antiviral IFN signaling. Finally, knockdown of Beclin1 partially reverses PLP2-TM’s inhibitory effect on innate immunity which resulting in decreased coronavirus replication. These results suggested that coronavirus papain-like protease induces incomplete autophagy by interacting with Beclin1, which in turn modulates coronavirus replication and antiviral innate immunity.

Keywords

coronavirus / papain-like protease / autophagy / antiviral immunity / Beclin1 / STING

Cite this article

Download citation ▾
Xiaojuan Chen, Kai Wang, Yaling Xing, Jian Tu, Xingxing Yang, Qian Zhao, Kui Li, Zhongbin Chen. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity. Protein Cell, 2014, 5(12): 912‒927 https://doi.org/10.1007/s13238-014-0104-6

References

[1]
Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC (2005) The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. Journal of virology79: 15189-15198
CrossRef Google scholar
[2]
Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol221: 117-124
CrossRef Google scholar
[3]
Bernasconi R, Noack J, Molinari M (2012) Unconventional roles of nonlipidated LC3 in ERAD tuning and coronavirus infection. Autophagy8: 1534-1536
CrossRef Google scholar
[4]
Bibeau-Poirier A, Servant MJ (2008) Roles of ubiquitination in pattern-recognition receptors and type I interferon receptor signaling. Cytokine43: 359-367
CrossRef Google scholar
[5]
Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol171: 603-614
CrossRef Google scholar
[6]
Chen ZJ (2012) Ubiquitination in signaling to and activation of IKK. Immunol Rev246: 95-106
CrossRef Google scholar
[7]
Chen Z, Wang Y, Ratia K, Mesecar AD, Wilkinson KD, Baker SC (2007) Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63. J Virol81: 6007-6018
CrossRef Google scholar
[8]
Chen Q, Fang L, Wang D, Wang S, Li P, Li M, Luo R, Chen H, Xiao S (2012) Induction of autophagy enhances porcine reproductive and respiratory syndrome virus replication. Virus Res163: 650-655
CrossRef Google scholar
[9]
Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. New Engl J Med368: 651-662
CrossRef Google scholar
[10]
Clementz MA, Chen Z, Banach BS, Wang Y, Sun L, Ratia K, Baez-Santos YM, Wang J, Takayama J, Ghosh AK (2010) Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J Virol84: 4619-4629
CrossRef Google scholar
[11]
Cottam EM, Maier HJ, Manifava M, Vaux LC, Chandra-Schoenfelder P, Gerner W, Britton P, Ktistakis NT, Wileman T (2011) Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy7: 1335-1347
CrossRef Google scholar
[12]
de Haan CA, Reggiori F (2008) Are nidoviruses hijacking the autophagy machinery? Autophagy4: 276-279
CrossRef Google scholar
[13]
Deretic V (2012) Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr Opin Immunol24: 21-31
CrossRef Google scholar
[14]
Devaraj SG, Wang N, Chen Z, Chen Z, Tseng M, Barretto N, Lin R, Peters CJ, Tseng CT, Baker SC (2007) Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem282: 32208-32221
CrossRef Google scholar
[15]
Dong X, Levine B (2013) Autophagy and viruses: adversaries or allies? J Innate Immun5: 480-493
CrossRef Google scholar
[16]
Dreux M, Chisari FV (2010) Viruses and the autophagy machinery. Cell Cycle (Georgetown, Tex.)9: 1295-1307
CrossRef Google scholar
[17]
Gannage M, Dormann D, Albrecht R, Dengjel J, Torossi T, Ramer PC, Lee M, Strowig T, Arrey F, Conenello G (2009) Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe6: 367-380
CrossRef Google scholar
[18]
Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol221: 3-12
CrossRef Google scholar
[19]
Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC (2002) RNA replication of mouse hepatitis virus takes place at doublemembrane vesicles. J Virol76: 3697-3708
CrossRef Google scholar
[20]
Hagemeijer MC, Verheije MH, Ulasli M, Shaltiel IA, de Vries LA, Reggiori F, Rottier PJ, de Haan CA (2010) Dynamics of coronavirus replication-transcription complexes. J Virol84: 2134-2149
CrossRef Google scholar
[21]
Hoyer-Hansen M, Bastholm L, Mathiasen IS, Elling F, Jaattela M (2005) Vitamin D analog EB1089 triggers dramatic lysosomal changes and Beclin 1-mediated autophagic cell death. Cell Death Differ12: 1297-1309
CrossRef Google scholar
[22]
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell20: 1992-2003
CrossRef Google scholar
[23]
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J19: 5720-5728
CrossRef Google scholar
[24]
Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin1 network regulates autophagy and apoptosis. Cell Death Differ18: 571-580
CrossRef Google scholar
[25]
Ke PY, Chen SS (2011) Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J Clin Investig121: 37-56
CrossRef Google scholar
[26]
Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy3: 452-460
CrossRef Google scholar
[27]
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy8: 445-544
CrossRef Google scholar
[28]
Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, Mommaas AM, Snijder EJ (2008) SARScoronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS biology6: e226
CrossRef Google scholar
[29]
Kraft C, Martens S (2012) Mechanisms and regulation of autophagosome formation. Curr Opin Cell Biol24: 496-501
CrossRef Google scholar
[30]
Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev9: 1004-1010
CrossRef Google scholar
[31]
Kuballa P, Nolte WM, Castoreno AB, Xavier RJ (2012) Autophagy and the immune system. Annu Rev Immunol30: 611-646
CrossRef Google scholar
[32]
Kudchodkar SB, Levine B (2009) Viruses and autophagy. Rev Med Virol19: 359-378
CrossRef Google scholar
[33]
Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A (2009) Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol186: 255-268
CrossRef Google scholar
[34]
Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol7: 767-777
CrossRef Google scholar
[35]
Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature469: 323-335
CrossRef Google scholar
[36]
Li J, Liu Y, Wang Z, Liu K, Wang Y, Liu J, Ding H, Yuan Z (2011) Subversion of cellular autophagy machinery by hepatitis B virus for viral envelopment. J Virol85: 6319-6333
CrossRef Google scholar
[37]
Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol10: 776-787
CrossRef Google scholar
[38]
Liu Q, Qin Y, Zhou L, Kou Q, Guo X, Ge X, Yang H, Hu H (2012) Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells. Virology429: 136-147
CrossRef Google scholar
[39]
Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity34: 680-692
CrossRef Google scholar
[40]
Maier HJ, Britton P (2012) Involvement of autophagy in coronavirus replication. Viruses4: 3440-3451
CrossRef Google scholar
[41]
Maier HJ, Cottam EM, Stevenson-Leggett P, Wilkinson JA, Harte CJ, Wileman T, Britton P (2013) Visualizing the autophagy pathway in avian cells and its application to studying infectious bronchitis virus. Autophagy9: 496-509
CrossRef Google scholar
[42]
Matsunaga K, Noda T, Yoshimori T (2009) Binding Rubicon to cross the Rubicon. Autophagy5: 876-877
CrossRef Google scholar
[43]
Mehrpour M, Esclatine A, Beau I, Codogno P (2010) Overview of macroautophagy regulation in mammalian cells. Cell Res20: 748-762
CrossRef Google scholar
[44]
Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol13: 1016-1023
CrossRef Google scholar
[45]
Mizushima N (2009) Physiological functions of autophagy. Curr Topics Microbiol Immunol335: 71-84
CrossRef Google scholar
[46]
Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell140: 313-326
CrossRef Google scholar
[47]
Monastyrska I, Ulasli M, Rottier PJ, Guan JL, Reggiori F, de Haan CA (2013) An autophagy-independent role for LC3 in equine arteritis virus replication. Autophagy9: 164-174
CrossRef Google scholar
[48]
Munz C (2011) Beclin-1 targeting for viral immune escape. Viruses3: 1166-1178
CrossRef Google scholar
[49]
Orvedahl A, Levine B (2008) Viral evasion of autophagy. Autophagy4: 280-285
CrossRef Google scholar
[50]
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem282: 24131-24145
CrossRef Google scholar
[51]
Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and Beclin1 complexes. Biochimie90: 313-323
CrossRef Google scholar
[52]
Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR (2004) Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem279: 10136-10141
CrossRef Google scholar
[53]
Rabinowitz JD, White E (2010) Autophagy and metabolism. Science (New York, N.Y.)330: 1344-1348
CrossRef Google scholar
[54]
Reggiori F, Monastyrska I, Verheije MH, Cali T, Ulasli M, Bianchi S, Bernasconi R, de Haan CA, Molinari M (2010) Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe7: 500-508
CrossRef Google scholar
[55]
Richards AL, Jackson WT (2013) How positive-strand RNA viruses benefit from autophagosome maturation. J Virol87: 9966-9972
CrossRef Google scholar
[56]
Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science (New York, N.Y.)306: 990-995
CrossRef Google scholar
[57]
Shoji-Kawata S, Levine B (2009) Autophagy, antiviral immunity, and viral countermeasures. Biochim Biophys Acta1793: 1478-1484
CrossRef Google scholar
[58]
Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, Mommaas AM (2006) Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol80: 5927-5940
CrossRef Google scholar
[59]
Sumpter R Jr, Levine B (2011) Selective autophagy and viruses. Autophagy7: 260-265
CrossRef Google scholar
[60]
Sun L, Xing Y, Chen X, Zheng Y, Yang Y, Nichols DB, Clementz MA, Banach BS, Li K, Baker SC, Chen Z (2012a) Coronavirus papainlike proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PloS One7: e30802
CrossRef Google scholar
[61]
Sun MX, Huang L, Wang R, Yu YL, Li C, Li PP, Hu XC, Hao HP, Ishag HA, Mao X (2012b) Porcine reproductive and respiratory syndrome virus induces autophagy to promote virus replication. Autophagy8: 1434-1447
CrossRef Google scholar
[62]
Tang SW, Chen CY, Klase Z, Zane L, Jeang KT (2013) The cellular autophagy pathway modulates human T-cell leukemia virus type 1 replication. J Virol87: 1699-1707
CrossRef Google scholar
[63]
Weidberg H, Shvets E, Elazar Z (2011) Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem80: 125-156
CrossRef Google scholar
[64]
Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, Luo H (2008) Autophagosome supports coxsackievirus B3 replication in host cells. J Virol82: 9143-9153
CrossRef Google scholar
[65]
Xing Y, Chen J, Tu J, Zhang B, Chen X, Shi H, Baker SC, Feng L, Chen Z (2013) The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. J Gen Virol94: 1554-1567
CrossRef Google scholar
[66]
Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther10: 1533-1541
CrossRef Google scholar
[67]
Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, Chen Z (2014) Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol95: 614-626
CrossRef Google scholar
[68]
Zhao Z, Thackray LB, Miller BC, Lynn TM, Becker MM, Ward E, Mizushima NN, Denison MR, Virgin HWT (2007) Coronavirus replication does not require the autophagy gene ATG5. Autophagy3: 581-585
CrossRef Google scholar
[69]
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009a) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin1-phosphatidylinositol-3-kinase complex. Nat Cell Biol11: 468-476
CrossRef Google scholar
[70]
Zhong Y, Wang QJ, Yue Z (2009b) Atg14L and Rubicon: yin and yang of Beclin 1-mediated autophagy control. Autophagy5: 890-891
CrossRef Google scholar
[71]
Zhou H, Perlman S (2007) Mouse hepatitis virus does not induce Beta interferon synthesis and does not inhibit its induction by double-stranded RNA. J Virol81: 568-574
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(2246 KB)

Accesses

Citations

Detail

Sections
Recommended

/