The hierarchy quorum sensing network in Pseudomonas aeruginosa

Jasmine Lee, Lianhui Zhang

PDF(632 KB)
PDF(632 KB)
Protein Cell ›› 2015, Vol. 6 ›› Issue (1) : 26-41. DOI: 10.1007/s13238-014-0100-x
REVIEW
REVIEW

The hierarchy quorum sensing network in Pseudomonas aeruginosa

Author information +
History +

Abstract

Pseudomonas aeruginosa causes severe and persistent infections in immune compromised individuals and cystic fibrosis sufferers. The infection is hard to eradicate as P. aeruginosa has developed strong resistance to most conventional antibiotics. The problem is further compounded by the ability of the pathogen to form biofilm matrix, which provides bacterial cells a protected environment withstanding various stresses including antibiotics. Quorum sensing (QS), a cell density-based intercellular communication system, which plays a key role in regulation of the bacterial virulence and biofilm formation, could be a promising target for developing new strategies against P. aeruginosa infection. The QS network of P. aeruginosa is organized in a multi-layered hierarchy consisting of at least four interconnected signaling mechanisms. Evidence is accumulating that the QS regulatory network not only responds to bacterial population changes but also could react to environmental stress cues. This plasticity should be taken into consideration during exploration and development of anti-QS therapeutics.

Keywords

quorum sensing / IQS / PQS / las / rhl / Pseudomonas aeruginosa / virulence / environmental factors

Cite this article

Download citation ▾
Jasmine Lee, Lianhui Zhang. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell, 2015, 6(1): 26‒41 https://doi.org/10.1007/s13238-014-0100-x

References

[1]
Abe A, Matsuzawa T, Kuwae A (2005) Type-III effectors: sophisticated bacterial virulence factors. C R Biol328: 413-428
CrossRef Google scholar
[2]
Adam EC, Mitchell BS, Schumacher DU, Grant G, Schumacher U (1997) Pseudomonas aeruginosa II lectin stops human ciliary beating: therapeutic implications of fucose. Am J Respir Crit Care Med155: 2102-2104
CrossRef Google scholar
[3]
Albus AM, Pesci EC, Runyen-Janecky LJ, West SE, Iglewski BH (1997) Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol179: 3928-3935
[4]
Anba J, Bidaud M, Vasil ML, Lazdunski A (1990) Nucleotide sequence of the Pseudomonas aeruginosa phoB gene, the regulatory gene for the phosphate regulon. J Bacteriol172: 4685-4689
[5]
Bains M, Fernandez L, Hancock RE (2012) Phosphate starvation promotes swarming motility and cytotoxicity of Pseudomonas aeruginosa. Appl Environ Microbiol78: 6762-6768
CrossRef Google scholar
[6]
Baysse C, Cullinane M, Dénervaud V, Burrowes E, Dow JM, Morrissey JP, Tam L, Trevors JT, O’Gara F (2005) Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. Microbiology151: 2529-2542
CrossRef Google scholar
[7]
Bertani I, Venturi V (2004) Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationaryphase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol70: 5493-5502
CrossRef Google scholar
[8]
Blier A-S, Veron W, Bazire A, Gerault E, Taupin L, Vieillard J, Rehel K, Dufour A, Le Derf F, Orange N (2011) C-type natriuretic peptide modulates quorum sensing molecule and toxin production in Pseudomonas aeruginosa. Microbiology157: 1929-1944
CrossRef Google scholar
[9]
Bonomo RA, Szabo D (2006) Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clinical Infectious Diseases43(Suppl 2): 49-S56
CrossRef Google scholar
[10]
Borlee BR, Geske GD, Blackwell HE, Handelsman J (2010) Identification of synthetic inducers and inhibitors of the quorum-sensing regulator LasR in Pseudomonas aeruginosa by high-throughput screening. Appl Environ Microbiol76: 8255-8258
CrossRef Google scholar
[11]
Branny P, Pearson JP, Pesci EC, Kohler T, Iglewski BH, Van Delden C (2001) Inhibition of quorum sensing by a Pseudomonas aeruginosa dksA homologue. J Bacteriol183: 1531-1539
CrossRef Google scholar
[12]
Brint JM, Ohman DE (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. Journal of Bacteriology177: 7155-7163
[13]
Cabrol S, Olliver A, Pier GB, Andremont A, Ruimy R (2003) Transcription of quorum-sensing system genes in clinical and environmental isolates of Pseudomonas aeruginosa. J Bacteriol185: 7222-7230
CrossRef Google scholar
[14]
Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science311: 1113-1116
CrossRef Google scholar
[15]
Campodonico VL, Gadjeva M, Paradis-Bleau C, Uluer A, Pier GB (2008) Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol Med14: 120-133
CrossRef Google scholar
[16]
Cao JG, Meighen EA (1993) Biosynthesis and stereochemistry of the autoinducer controlling luminescence in Vibrio harveyi. J Bacteriol175: 3856-3862
[17]
Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG (2001) A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci USA98: 14613-14618
CrossRef Google scholar
[18]
Castric PA (1983) Hydrogen cyanide production by Pseudomonas aeruginosa at reduced oxygen levels. Can J Microbiol29: 1344-1349
CrossRef Google scholar
[19]
Castric P (1994) Influence of oxygen on the Pseudomonas aeruginosa hydrogen cyanide synthase. Curr Microbiol29: 19-21
CrossRef Google scholar
[20]
Castric PA, Ebert RF, Castric KF (1979) The relationship between growth phase and cyanogenesis in Pseudomonas aeruginosa. Curr Microbiol2: 287-292
CrossRef Google scholar
[21]
Chernish RN, Aaron SD (2003) Approach to resistant gram-negative bacterial pulmonary infections in patients with cystic fibrosis. Curr Opin Pulm Med9: 509-515
CrossRef Google scholar
[22]
Chugani S, Greenberg E (2007) The influence of human respiratory epithelia on Pseudomonas aeruginosa gene expression. Microbial pathogenesis42: 29-35
CrossRef Google scholar
[23]
Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci USA98: 2752-2757
CrossRef Google scholar
[24]
Ciofu O, Mandsberg LF, Bjarnsholt T, Wassermann T, Høiby N (2010) Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology156: 1108-1119
CrossRef Google scholar
[25]
Coleman JP, Hudson LL, McKnight SL, Farrow JM, Calfee MW, Lindsey CA, Pesci EC (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol190: 1247-1255
CrossRef Google scholar
[26]
Collier DN, Anderson L, McKnight SL, Noah TL, Knowles M, Boucher R, Schwab U, Gilligan P, Pesci EC (2002) A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett215: 41-46
CrossRef Google scholar
[27]
Cook JMI, Harragan B (1992) In: Proceedings of the 92nd annual meeting of the american society for microbiology. Paper presented at 92nd annual meeting of the american society for microbiology, New Orleans
[28]
Cornforth JW, James AT (1956) Structure of a naturally occurring antagonist of dihydrostreptomycin. The Biochemical Journal63: 124-130
[29]
Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC, Ivens A, Diggle SP, Brown SP (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci3(4): 220-227
[30]
Costerton JW (2001) Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol9: 50-52
CrossRef Google scholar
[31]
Daddaoua A, Fillet S, Fernández M, Udaondo Z, Krell T, Ramos JL (2012) Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS. PLoS One7: e39390
CrossRef Google scholar
[32]
D’Argenio DA, Calfee MW, Rainey PB, Pesci EC (2002) Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol184: 6481-6489
CrossRef Google scholar
[33]
D’Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Deziel E, Smith EE, Nguyen H, Ernst RK, Larson Freeman TJ, Spencer DH (2007) Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol64: 512-533
CrossRef Google scholar
[34]
de Kievit T, Seed PC, Nezezon J, Passador L, Iglewski BH (1999) RsaL, a novel repressor of virulence gene expression in Pseudomonas aeruginosa. J Bacteriol181: 2175-2184
[35]
Dekimpe V, Deziel E (2009) Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology155: 712-723
CrossRef Google scholar
[36]
Denervaud V, TuQuoc P, Blanc D, Favre-Bonte S, Krishnapillai V, Reimmann C, Haas D, van Delden C (2004) Characterization of cell-to-cell signaling-deficient Pseudomonas aeruginosa strains colonizing intubated patients. J Clin Microbiol42: 554-562
CrossRef Google scholar
[37]
Deng Y, Wu J, Tao F, Zhang LH (2011) Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem Rev111: 160-173
CrossRef Google scholar
[38]
Denning GM, Wollenweber LA, Railsback MA, Cox CD, Stoll LL, Britigan BE (1998) Pseudomonas pyocyanin increases interleukin- 8 expression by human airway epithelial cells. Infect Immun66: 5777-5784
[39]
Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA101: 1339-1344
CrossRef Google scholar
[40]
Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE, Saucier M, Xiao G, Rahme LG (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of Nacyl-l-homoserine lactones. Mol Microbiol55: 998-1014
CrossRef Google scholar
[41]
Diggle SP, Winzer K, Lazdunski A, Williams P, Camara M (2002) Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol184: 2576-2586
CrossRef Google scholar
[42]
Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol50: 29-43
CrossRef Google scholar
[43]
Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Cámara M (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol14: 87-96
CrossRef Google scholar
[44]
Doshi HK, Chua K, Kagda F, Tambyah PA (2011) Multi drug resistant pseudomonas infection in open fractures post definitive fixation leading to limb loss: a report of three cases. International Journal of Case Reports and Images (IJCRI)2: 1-6
CrossRef Google scholar
[45]
Dubern JF, Diggle SP (2008) Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst4: 882-888
CrossRef Google scholar
[46]
Eberhard A (1972) Inhibition and activation of bacterial luciferase synthesis. J Bacteriol109: 1101-1105
[47]
Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ (1981) Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry20: 2444-2449
CrossRef Google scholar
[48]
Farrow JM 3rd, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC (2008) PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol190: 7043-7051
CrossRef Google scholar
[49]
Filloux A, Bally M, Soscia C, Murgier M, Lazdunski A (1988) Phosphate regulation in Pseudomonas aeruginosa: cloning of the alkaline phosphatase gene and identification of phoB-and phoRlike genes. Mol Gen Genet212: 510-513
CrossRef Google scholar
[50]
Frisk A, Schurr JR, Wang G, Bertucci DC, Marrero L, Hwang SH, Hassett DJ, Schurr MJ (2004) Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun72: 5433-5438
CrossRef Google scholar
[51]
Fuqua C (2006) The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity. J Bacteriol188: 3169-3171
CrossRef Google scholar
[52]
Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol176: 269-275
[53]
Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol184: 6472-6480
CrossRef Google scholar
[54]
Gambello MJ, Iglewski BH (1991) Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol173: 3000-3009
[55]
Gambello MJ, Kaye S, Iglewski BH (1993) LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun61: 1180-1184
[56]
Gentry DR, Cashel M (1996) Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol Microbiol19: 1373-1384
CrossRef Google scholar
[57]
Haddad A, Jensen V, Becker T, Haussler S (2009) The Pho regulon influences biofilm formation and type three secretion in Pseudomonas aeruginosa. Environ Microbiol Rep1: 488-494
CrossRef Google scholar
[58]
Hamood AN, Griswold J, Colmer J (1996) Characterization of elastase-deficient clinical isolates of Pseudomonas aeruginosa. Infect Immun64: 3154-3160
[59]
Hauser AR, Cobb E, Bodí M, Mariscal D, Vallés J, Engel JN, Rello J (2002) Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med30: 521-528
CrossRef Google scholar
[60]
Henry RL, Mellis CM, Petrovic L (1992) Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol12: 158-161
CrossRef Google scholar
[61]
Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nature Rev Microbiol5: 230-239
CrossRef Google scholar
[62]
Heurlier K, Dénervaud V, Pessi G, Reimmann C, Haas D (2003) Negative control of quorum sensing by RpoN (σ54) in Pseudomonas aeruginosa PAO1. J Bacteriol185: 2227-2235
CrossRef Google scholar
[63]
Hoffman LR, Kulasekara HD, Emerson J, Houston LS, Burns JL, Ramsey BW, Miller SI (2009)Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros8: 66-70
CrossRef Google scholar
[64]
Hsieh Y-J, Wanner BL (2010) Global regulation by the sevencomponent Pi signaling system. Curr Opin Microbiol13: 198-203
CrossRef Google scholar
[65]
Huang JJ, Petersen A, Whiteley M, Leadbetter JR (2006) Identification of QuiP, the product of gene PA1032, as the second acylhomoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol72: 1190-1197
CrossRef Google scholar
[66]
Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev62: 379-433
[67]
Jackowski JT, Szepfalusi Z, Wanner DA, Seybold Z, Sielczak MW, Lauredo IT, Adams T, Abraham WM, Wanner A (1991) Effects of P. aeruginosa-derived bacterial products on tracheal ciliary function: role of O2 radicals. Am J Physiol260: L61-L67
[68]
Jackson AA, Gross MJ, Daniels EF, Hampton TH, Hammond JH, Vallet-Gely I, Dove SL, Stanton BA, Hogan DA (2013) Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence. J Bacteriol195: 3093-3104
CrossRef Google scholar
[69]
Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Münch R, Häussler S (2006) RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and-independent pathways. J Bacteriol188: 8601-8606
CrossRef Google scholar
[70]
Jones S, Yu B, Bainton NJ, Birdsall M, Bycroft BW, Chhabra SR, Cox AJ, Golby P, Reeves PJ, Stephens S (1993) The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J12: 2477-2482
[71]
Joseleau-Petit D, Vinella D, D’Ari R (1999) Metabolic alarms and cell division in Escherichia coli. J Bacteriol181: 9-14
[72]
Jude F, Kohler T, Branny P, Perron K, Mayer MP, Comte R, van Delden C (2003) Posttranscriptional control of quorum-sensing-dependent virulence genes by DksA in Pseudomonas aeruginosa. J Bacteriol185: 3558-3566
CrossRef Google scholar
[73]
Juhas M, Wiehlmann L, Huber B, Jordan D, Lauber J, Salunkhe P, Limpert AS, von Gotz F, Steinmetz I, Eberl L (2004) Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology150: 831-841
CrossRef Google scholar
[74]
Kessler E, Safrin M, Olson JC, Ohman DE (1993) Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. J Biol Chem268: 7503-7508
[75]
Kim EJ, Sabra W, Zeng AP (2003) Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology149: 2627-2634
CrossRef Google scholar
[76]
Kiratisin P, Tucker KD, Passador L (2002) LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol184: 4912-4919
CrossRef Google scholar
[77]
Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R, Reid DW, Lamont IL (2013) Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun81: 2697-2704
CrossRef Google scholar
[78]
Kosorok MR, Zeng L, West SE, Rock MJ, Splaingard ML, Laxova A, Green CG, Collins J, Farrell PM (2001) Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol32: 277-287
CrossRef Google scholar
[79]
Krieg DP, Helmke RJ, German VF, Mangos JA (1988) Resistance of mucoid Pseudomonas aeruginosa to nonopsonic phagocytosis by alveolar macrophages in vitro. Infect Immun56: 3173-3179
[80]
Laarman AJ, Bardoel BW, Ruyken M, Fernie J, Milder FJ, van Strijp JA, Rooijakkers SH (2012) Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J Immunol188: 386-393
CrossRef Google scholar
[81]
Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol17: 333-343
CrossRef Google scholar
[82]
Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol21: 1137-1146
CrossRef Google scholar
[83]
Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D (2004) Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun72: 4275-4278
CrossRef Google scholar
[84]
Ledgham F, Soscia C, Chakrabarty A, Lazdunski A, Foglino M (2003a) Global regulation in Pseudomonas aeruginosa: the regulatory protein AlgR2 (AlgQ) acts as a modulator of quorum sensing. Res Microbiol154: 207-213
CrossRef Google scholar
[85]
Ledgham F, Ventre I, Soscia C, Foglino M, Sturgis JN, Lazdunski A (2003b) Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol Microbiol48: 199-210
CrossRef Google scholar
[86]
Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, Chang C, Dong Y, Williams P, Zhang LH (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nature Chem Biol9: 339-343
CrossRef Google scholar
[87]
Lépine F, Milot S, Déziel E, He J, Rahme LG (2004) Electrospray/ mass spectrometric identification and analysis of 4-hydroxy-2- alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom15: 862-869
CrossRef Google scholar
[88]
Lequette Y, Greenberg EP (2005) Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol187: 37-44
CrossRef Google scholar
[89]
Li LL, Malone JE, Iglewski BH (2007) Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J Bacteriol189: 4367-4374
CrossRef Google scholar
[90]
Lightbown JW, Jackson FL (1956) Inhibition of cytochrome systems of heart muscle and certain bacteria by the antagonists of dihydrostreptomycin: 2-alkyl-4-hydroxyquinoline N-oxides. Biochem J63: 130-137
[91]
Mattmann ME, Blackwell HE (2010) Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. J Org Chem75: 6737-6746
CrossRef Google scholar
[92]
McEwan DL, Kirienko NV, Ausubel FM (2012) Host translational inhibition by Pseudomonas aeruginosa exotoxin A triggers an immune response in Caenorhabditis elegans. Cell Host Microbe11: 364-374
CrossRef Google scholar
[93]
McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol182: 2702-2708
CrossRef Google scholar
[94]
Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol104: 313-322
[95]
Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet43: 197-222
CrossRef Google scholar
[96]
Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA92: 6424-6428
CrossRef Google scholar
[97]
Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002) GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol45: 1277-1287
CrossRef Google scholar
[98]
Oglesby AG, Farrow JM, Lee J-H, Tomaras AP, Greenberg E, Pesci EC, Vasil ML (2008) The influence of iron on Pseudomonas aeruginosa Physiology: a regulatory link between iron and quorum sensing. J Biol Chem283: 15558-15567
CrossRef Google scholar
[99]
Park PW, Pier GB, Preston MJ, Goldberger O, Fitzgerald ML, Bernfield M(2000) Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol Chem275: 3057-3064
CrossRef Google scholar
[100]
Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol40: 1215-1226
CrossRef Google scholar
[101]
Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science260: 1127-1130
CrossRef Google scholar
[102]
Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg EP (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA91: 197-201
CrossRef Google scholar
[103]
Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci USA92: 1490-1494
CrossRef Google scholar
[104]
Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev37: 156-181
[105]
Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol179: 3127-3132
[106]
Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA96: 11229-11234
CrossRef Google scholar
[107]
Pessi G, Haas D (2000) Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J Bacteriol182: 6940-6949
CrossRef Google scholar
[108]
Pessi G, Williams F, Hindle Z, Heurlier K, Holden MT, Cámara M, Haas D, Williams P (2001) The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol183: 6676-6683
CrossRef Google scholar
[109]
Rabin HR, Butler SM, Wohl MEB, Geller DE, Colin AA, Schidlow DV, Johnson CA, Konstan MW, Regelmann WE (2004) Pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol37: 400-406
CrossRef Google scholar
[110]
Rahme LG, Tan M-W, Le L, Wong SM, Tompkins RG, Calderwood SB, Ausubel FM (1997) Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci USA94: 13245-13250
CrossRef Google scholar
[111]
Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC, Lau GW, Mahajan-Miklos S, Plotnikova J, Tan MW, Tsongalis J (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA97: 8815-8821
CrossRef Google scholar
[112]
Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M, Venturi V, Zennaro E, Leoni L (2007) RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol66: 1557-1565
CrossRef Google scholar
[113]
Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol10: 365-370
CrossRef Google scholar
[114]
Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, Haas D (1997) The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol24: 309-319
CrossRef Google scholar
[115]
Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis183: 1767-1774
CrossRef Google scholar
[116]
Ryall B, Davies JC, Wilson R, Shoemark A, Williams HD (2008) Pseudomonas aeruginosa, cyanide accumulation and lung function in CF and non-CF bronchiectasis patients. Eur Respir J32: 740-747
CrossRef Google scholar
[117]
Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol186: 7312-7326
CrossRef Google scholar
[118]
Schaber JA, Carty NL, McDonald NA, Graham ED, Cheluvappa R, Griswold JA, Hamood AN (2004) Analysis of quorum sensingdeficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol53: 841-853
CrossRef Google scholar
[119]
Schafhauser J, Lepine F, McKay G, Ahlgren HG, Khakimova M, Nguyen D (2014) The stringent response modulates 4-hydroxy-2-alkylquinoline biosynthesis and quorum-sensing hierarchy in Pseudomonas aeruginosa. J Bacteriol196: 1641-1650
CrossRef Google scholar
[120]
Schertzer JW, Boulette ML, Whiteley M (2009) More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol17: 189-195
CrossRef Google scholar
[121]
Schuster M, Greenberg EP (2006) A network of networks: quorumsensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol296: 73-81
CrossRef Google scholar
[122]
Schuster M, Greenberg EP (2007) Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics8: 287
CrossRef Google scholar
[123]
Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185: 2066-2079
CrossRef Google scholar
[124]
Schuster M, Urbanowski ML, Greenberg EP (2004) Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci USA101: 15833-15839
CrossRef Google scholar
[125]
Seet Q, Zhang LH (2011) Anti-activator QslA defines the quorum sensing threshold and response in Pseudomonas aeruginosa. Mol Microbiol 80: 951-965
CrossRef Google scholar
[126]
Siehnel R, Traxler B, An DD, Parsek MR, Schaefer AL, Singh PK (2010) A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa. Proc Natl Acad Sci USA107: 7916-7921
CrossRef Google scholar
[127]
Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Camara M, Williams P, Quax WJ (2006) Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun74: 1673-1682
CrossRef Google scholar
[128]
Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA103: 8487-8492
CrossRef Google scholar
[129]
Solomonson LP (1981) Cyanide as a metabolic inhibitor. In: Vennesland EECB, Knowles CJ, Westley J, Wissing F(eds) Cyanide in biology. Academic Press, London, pp 11-28
[130]
Stewart GS, Williams P (1992) lux genes and the applications of bacterial bioluminescence. Journal of general microbiology138: 1289-1300
CrossRef Google scholar
[131]
Strempel N, Neidig A, Nusser M, Geffers R, Vieillard J, Lesouhaitier O, Brenner-Weiss G, Overhage J (2013) Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One8: e82240
CrossRef Google scholar
[132]
Svitil AL, Cashel M, Zyskind JW (1993) Guanosine tetraphosphate inhibits protein synthesis in vivo. A possible protective mechanism for starvation stress in Escherichia coli. J Biol Chem268: 2307-2311
[133]
Tan TT (2008) “Future” threat of gram-negative resistance in Singapore. Ann Acad Med Singap37: 884-890
[134]
Thompson LS, Webb JS, Rice SA, Kjelleberg S (2003) The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. FEMS Microbiol Lett220: 187-195
CrossRef Google scholar
[135]
Toder DS, Gambello MJ, Iglewski BH (1991) Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR. Mol Microbiol5: 2003-2010
CrossRef Google scholar
[136]
Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis4: 551-560
CrossRef Google scholar
[137]
Van Delden C, Pesci EC, Pearson JP, Iglewski BH (1998) Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun66: 4499-4502
[138]
van Delden C, Comte R, Bally AM (2001) Stringent response activates quorum sensing and modulates cell density-dependent gene expression in Pseudomonas aeruginosa. J Bacteriol183: 5376-5384
CrossRef Google scholar
[139]
Ventre I, Ledgham F, Prima V, Lazdunski A, Foglino M, Sturgis JN (2003) Dimerization of the quorum sensing regulator RhlR: development of a method using EGFP fluorescence anisotropy. Mol Microbiol48: 187-198
CrossRef Google scholar
[140]
von Bodman SB, Willey JM, Diggle SP (2008) Cell–cell communication in bacteria: united we stand. J Bacteriol190: 4377-4391
CrossRef Google scholar
[141]
Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC (2005) Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol187: 4372-4380
CrossRef Google scholar
[142]
Westblade LF, Ilag LL, Powell AK, Kolb A, Robinson CV, Busby SJ (2004) Studies of the Escherichia coli Rsd-sigma70 complex. J Mol Biol335: 685-692
CrossRef Google scholar
[143]
Whitchurch CB, Beatson SA, Comolli JC, Jakobsen T, Sargent JL, Bertrand JJ, West J, Klausen M, Waite LL, Kang PJ (2005) Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways. Mol Microbiol55: 1357-1378
CrossRef Google scholar
[144]
Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev25: 365-404
CrossRef Google scholar
[145]
Whiteley M, Greenberg EP (2001) Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol183: 5529-5534
CrossRef Google scholar
[146]
Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA96: 13904-13909
CrossRef Google scholar
[147]
Whiteley M, Parsek MR, Greenberg EP (2000) Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J Bacteriol182: 4356-4360
CrossRef Google scholar
[148]
Williams P, Bainton NJ, Swift S, Chhabra SR, Winson MK, Stewart GS, Salmond GP, Bycroft BW (1992) Small molecule-mediated density-dependent control of gene expression in prokaryotes: bioluminescence and the biosynthesis of carbapenem antibiotics. FEMS Microbiol Lett100: 161-167
CrossRef Google scholar
[149]
Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR, Daykin M, Bally M, Chapon V, Salmond GP, Bycroft BW (1995) Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci USA92: 9427-9431
CrossRef Google scholar
[150]
Winzer K, Falconer C, Garber NC, Diggle SP, Camara M, Williams P (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol182: 6401-6411
CrossRef Google scholar
[151]
Wolz C, Hohloch K, Ocaktan A, Poole K, Evans RW, Rochel N, Albrecht-Gary AM, Abdallah MA, Doring G (1994) Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa. Infect Immun62: 4021-4027
[152]
Wu L, Estrada O, Zaborina O, Bains M, Shen L, Kohler JE, Patel N, Musch MW, Chang EB, Fu YX (2005) Recognition of host immune activation by Pseudomonas aeruginosa. Science 309: 774-777
CrossRef Google scholar
[153]
Xiao G, Deziel E, He J, Lepine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE, Rahme LG (2006a) MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol62: 1689-1699
CrossRef Google scholar
[154]
Xiao G, He J, Rahme LG (2006b) Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology152: 1679-1686
CrossRef Google scholar
[155]
Yanagihara K, Tomono K, Kaneko Y, Miyazaki Y, Tsukamoto K, Hirakata Y, Mukae H, Kadota J, Murata I, Kohno S (2003) Role of elastase in a mouse model of chronic respiratory Pseudomonas aeruginosa infection that mimics diffuse panbronchiolitis. Journal of medical microbiology52: 531-535
CrossRef Google scholar
[156]
Zaborin A, Romanowski K, Gerdes S, Holbrook C, Lepine F, Long J, Poroyko V, Diggle SP, Wilke A, Righetti K (2009) Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. Proc Natl Acad Sci USA106: 6327-6332
CrossRef Google scholar
[157]
Zaborina O, Lepine F, Xiao G, Valuckaite V, Chen Y, Li T, Ciancio M, Zaborin A, Petrof EO, Turner JR (2007) Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog3: e35
CrossRef Google scholar
[158]
Zhang L, Murphy PJ, Kerr A, Tate ME (1993) Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature362: 446-448
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AI Summary AI Mindmap
PDF(632 KB)

Accesses

Citations

Detail

Sections
Recommended

/