Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2018, Vol. 11 Issue (1) : 37-52     https://doi.org/10.1007/s12200-017-0764-y
REVIEW ARTICLE |
Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications
Yanhua LUO1,2(), Binbin YAN3, Jianzhong ZHANG4, Jianxiang WEN2, Jun HE5, Gang-Ding PENG1()
1. Photonics & Optical Communications, School of Electrical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
2. Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China
3. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
4. Key Lab of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
5. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Download: PDF(660 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Targeting the huge unused bandwidth (BW) of modern telecommunication networks, Bi/Er co-doped silica optical fibers (BEDFs) have been proposed and developed for ultra-broadband, high-gain optical amplifiers covering the 1150–1700 nm wavelength range. Ultra-broadband luminescence has been demonstrated in both BEDFs and bismuth/erbium/ytterbium co-doped optical fibers (BEYDFs) fabricated with the modified chemical vapor deposition (MCVD) and in situ doping techniques. Several novel and sophisticated techniques have been developed for the fabrication and characterization of the new active fibers. For controlling the performance of the active fibers, post-treatment processes using high temperature, g-radiation, and laser light have been introduced. Although many fundamental scientific and technological issues and challenges still remain, several photonic applications, such as fiber sensing, fiber gratings, fiber amplification, fiber lasers, etc., have already been demonstrated.

Keywords Bi/Er co-doped optical fiber (BEDF)      broadband emission      bismuth-related active center (BAC)      modified chemical vapor deposition (MCVD)      fiber amplifier      fiber sensing     
Corresponding Authors: Yanhua LUO,Gang-Ding PENG   
Just Accepted Date: 22 November 2017   Online First Date: 18 December 2017    Issue Date: 02 April 2018
 Cite this article:   
Yanhua LUO,Binbin YAN,Jianzhong ZHANG, et al. Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications[J]. Front. Optoelectron., 2018, 11(1): 37-52.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-017-0764-y
http://journal.hep.com.cn/foe/EN/Y2018/V11/I1/37
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanhua LUO
Binbin YAN
Jianzhong ZHANG
Jianxiang WEN
Jun HE
Gang-Ding PENG
Fig.1  Technology roadmap of BEDF development
Fig.2  Spectral ranges of various doping elements as well as the low-loss spectrum of silica-based optical fibers
Fig.3  Local structure model of Bi-doping into the distinct sites among the silica-based network microstructure (A, B, C)
Fig.4  Normalized luminescence spectra of erbium-doped optical fiber (EDF), ytterbium-doped optical fiber (YDF), and various BDFs [3134]
Fig.5  (a) Customised draw tower, one part of the Joint National Fiber Facility installed at The University of NSW [39]; (b) refractive index of the first BEDF preform fabricated with MCVD and in situ doping technique; (c) cross section of a BEDF
Fig.6  Emissions of a BEDF pumped by (a) 532 nm only (solid black); (b) 808 nm only (solid red); (c) dual pumping (both 532 and 808 nm (dashed blue). For comparison, the direct addition of the emissions by 532 nm only and by 808 nm only is shown as (d) (solid green) [21]. (Here the BEDF fiber length: 14 cm; 532 nm pump: 92 mW; 808 nm pump: 188 mW)
Fig.7  Emission comparison of BEYDF and BEDF measured under 40 mW 830 nm pumping [22]
Fig.8  Configuration of the simultaneous emission and absorption measurement of active optical fiber by side pumping and the related coordinate system
Fig.9  Excitation-emission spectrogram of a typical BEDF [37]
Fig.10  Schematic of FLT measurement with traditional time-domain spectroscopy and modern DSP
Fig.11  Luminescence of BEDF with different Bi and Er concentrations. Here luminescence from 1 cm fiber samples is obtained by an 830 nm laser at 60mW. BEDF1: Bi2O3 ~ 0.05 mol%, Er2O3<0.005 mol%; BEDF2: Bi2O3~0.02 mol%, Er2O3 ~ 0.01 mol%; BEDF3: Bi2O3~0.01 mol%, Er2O3~0 mol%. The concentrations of other dopants are ~ 0.15 mol% [Al2O3], ~ 0.94 mol% [P2O5] and ~12.9 mol% [GeO2], respectively [37]
Fig.12  Emission spectrum of experimental test, Gaussian components, and corresponding FLTs [55]
Fig.13  Progressive emission spectra after annealing processes at different temperature and cross-section of the un-annealed and 800°C annealed (5 h) BEDF (~ 2 cm) [62]
Fig.14  (a) Luminescence of the FUT under 830 nm pump of 60 mW as a function of time; (b) attenuation of FUT as a function of time after 1 h irradiation of 830 nm pump at 60 mW in the range of 700–900 nm [68]
Fig.15  Broadband emission of 3 m BEDF under 60 mW 830 nm pumping [37]
Fig.16  Ultra broadband transmission spectrum of cascaded 4 fiber Bragg gratings based on BEDF
Fig.17  Gain spectra of the BEDF (52 cm) with different 830 nm pump power7 [78]
1 Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362
https://doi.org/10.1038/nphoton.2013.94
2 Dianov E M. Amplification in extended transmission bands using bismuth-doped optical fibers. Journal of Lightwave Technology, 2013, 31(4): 681–688
https://doi.org/10.1109/JLT.2012.2211569
3 Won R. View from... communication networks beyond the capacity crunch: is it crunch time? Nature Photonics, 2015, 9(7): 424–426
https://doi.org/10.1038/nphoton.2015.114
4
5 Fujimoto Y, Nakatsuka M. Infrared luminescence from bismuth-doped silica glass. Japanese Journal of Applied Physics, 2001, 40(Part 2, No. 3B): L279–L281
6 Ohkura T, Fujimoto Y, Nakatsuka M, Young-Seok S. Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-ray absorption fine structure. Journal of the American Ceramic Society, 2007, 90(11): 3596–3600
https://doi.org/10.1111/j.1551-2916.2007.01934.x
7 Fujimoto Y. Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass. Journal of the American Ceramic Society, 2010, 93(2): 581–589
https://doi.org/10.1111/j.1551-2916.2009.03419.x
8 Sokolov V O, Plotnichenko V G, Koltashev V V, Dianov E M. Centres of broadband near-IR luminescence in bismuth-doped glasses. Journal of Physics D, Applied Physics, 2009, 42(9): 095410
https://doi.org/10.1088/0022-3727/42/9/095410
9 Meng X G, Qiu J R, Peng M Y, Chen D P, Zhao Q Z, Jiang X W, Zhu C S. Near infrared broadband emission of bismuth-doped aluminophosphate glass. Optics Express, 2005, 13(5): 1628–1634
https://doi.org/10.1364/OPEX.13.001628 pmid: 19495038
10 Sun H T, Zhou J, Qiu J. Recent advances in bismuth activated photonic materials. Progress in Materials Science, 2014, 64: 1–72
https://doi.org/10.1016/j.pmatsci.2014.02.002
11 Murata K, Fujimoto Y, Kanabe T, Fujita H, Nakatsuka M. Bi-doped SiO2 as a new laser material for an intense laser. Fusion Engineering and Design, 1999, 44(1–4): 437–439
https://doi.org/10.1016/S0920-3796(98)00334-2
12 Dianov E M. Bismuth-doped optical fibres: a new breakthrough in near-IR lasing media. Quantum Electronics, 2012, 42(9): 754–761
https://doi.org/10.1070/QE2012v042n09ABEH014970
13 Riumkin K E, Melkumov M A, Bufetov I A, Shubin A V, Firstov S V, Khopin V F, Guryanov A N, Dianov E M. Superfluorescent 1.44 mm bismuth-doped fiber source. Optics Letters, 2012, 37(23): 4817–4819
https://doi.org/10.1364/OL.37.004817 pmid: 23202056
14 Dvoyrin V V, Mashinsky V M, Dianov E M, Umnikov A A, Yashkov M V, Guranov A N. Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres. In: Proceedings of ECOC, 2005, 4: 949–950
15 Dianov E M. Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results. Laser Physics Letters, 2015, 12(9): 095106
https://doi.org/10.1088/1612-2011/12/9/095106
16 Dianov E M. Fiber for fiber lasers: bismuth-doped optical fibers: advances in an active laser media. Laser Focus World, 2015, 51(9): 16
17 Kuwada Y, Fujimoto Y, Nakatsuka M. Ultrawideband light emission from bismuth and erbium doped silica. Japanese Journal of Applied Physics, 2007, 46(4A): 1531–1532
https://doi.org/10.1143/JJAP.46.1531
18 Peng M, Zhang N, Wondraczek L, Qiu J, Yang Z, Zhang Q. Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses. Optics Express, 2011, 19(21): 20799–20807
https://doi.org/10.1364/OE.19.020799 pmid: 21997089
19 Minh Hau T, Yu X, Zhou D, Song Z, Yang Z, Wang R, Qiu J. Super broadband near-infrared emission and energy transfer in Bi–Er co-doped lanthanum aluminosilicate glasses. Optical Materials, 2013, 35(3): 487–490
https://doi.org/10.1016/j.optmat.2012.10.021
20 Minh Hau T, Wang R, Yu X, Zhou D, Song Z, Yang Z, He X, Qiu J. Near-infrared broadband luminescence and energy transfer in Bi–Tm–Er co-doped lanthanum aluminosilicate glasses. Journal of Physics and Chemistry of Solids, 2012, 73(9): 1182–1186
https://doi.org/10.1016/j.jpcs.2012.04.006
21 Luo Y, Wen J, Zhang J, Canning J, Peng G D. Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands. Optics Letters, 2012, 37(16): 3447–3449
https://doi.org/10.1364/OL.37.003447 pmid: 23381286
22 Sathi Z M, Zhang J, Luo Y, Canning J, Peng G D. Improving broadband emission within Bi/Er doped silicate fibres with Yb co-doping. Optical Materials Express, 2015, 5(10): 2096–2105
https://doi.org/10.1364/OME.5.002096
23 Wen J, Wang T, Pang F, Zeng X, Chen Z, Peng G D. Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis. Japanese Journal of Applied Physics, 2013, 52(12R): 122501
https://doi.org/10.7567/JJAP.52.122501
24 Corbett J D. Homopolyatomic ions of the post-transition elements—synthesis, structure and bonding. In: Lippard S J, ed. Progress in Inorganic Chemistry. Hoboken, NJ: John Wiley & Sons, Inc., 1976, vol 21
25 Khonthon S, Morimoto S, Arai Y, Ohishi Y. Redox equilibrium and NIR luminescence of Bi2O3-containing glasses. Optical Materials, 2009, 31(8): 1262–1268
https://doi.org/10.1016/j.optmat.2009.01.005
26 Sun H T, Sakka Y, Gao H, Miwa Y, Fujii M, Shirahata N, Bai Z, Li J G. Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal. Journal of Materials Chemistry, 2011, 21(12): 4060–4063
https://doi.org/10.1039/c1jm10164a
27 Sun H T, Sakka Y, Shirahata N, Gao H, Yonezawa T. Experimental and theoretical studies of photoluminescence from Bi82+ and Bi53+ stabilized by [AlCl4]- in molecular crystals. Journal of Materials Chemistry, 2012, 22(25): 12837–12841
https://doi.org/10.1039/c2jm30251a
28 Sun H T, Yonezawa T, Gillett-Kunnath M M, Sakka Y, Shirahata N, Rong Gui S C, Fujii M, Sevov S C. Ultra-broad near-infrared photoluminescence from crystalline (K-crypt)2Bi2 containing [Bi2]2- dimers. Journal of Materials Chemistry, 2012, 22(38): 20175–20178
https://doi.org/10.1039/c2jm34101h
29 Sun H T, Matsushita Y, Sakka Y, Shirahata N, Tanaka M, Katsuya Y, Gao H, Kobayashi K. Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y. Journal of the American Chemical Society, 2012, 134(6): 2918–2921
https://doi.org/10.1021/ja211426b pmid: 22296686
30 Peng M, Dong G, Wondraczek L, Zhang L, Zhang N, Qiu J. Discussion on the origin of NIR emission from Bi-doped materials. Journal of Non-Crystalline Solids, 2011, 357(11-13): 2241–2245
https://doi.org/10.1016/j.jnoncrysol.2010.11.086
31 Dianov E M, Firstov S V, Melkumov M. Bismuth-doped fiber lasers covering the spectral region 1150–1775 nm. In: Proceedings of Frontiers in Optics 2015, Optical Society of America, San Jose, California, 2015, LTu2H.1
32 Dianov E M, Firstov S V, Melkumov M A. Bismuth-doped optical fibers: advances and new developments. In: Proceedings of Workshop on Specialty Optical Fibers and Their Applications, Optical Society of America, Hong Kong, 2015, WT1A.4
33
34
35 Bufetov I A, Melkumov M A, Firstov S V, Riumkin K E, Shubin A V, Khopin V F, Guryanov A N, Dianov E M. Bi-doped optical fibers and fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 0903815
https://doi.org/10.1109/JSTQE.2014.2312926
36 Zhang J, Luo Y, Sathi Z M, Azadpeyma N, Peng G D. Test of spectral emission and absorption characteristics of active optical fibers by direct side pumping. Optics Express, 2012, 20(18): 20623–20628
https://doi.org/10.1364/OE.20.020623 pmid: 23037109
37 Zhang J, Sathi Z M, Luo Y, Canning J, Peng G D. Toward an ultra-broadband emission source based on the bismuth and erbium co-doped optical fiber and a single 830 nm laser diode pump. Optics Express, 2013, 21(6): 7786–7792
https://doi.org/10.1364/OE.21.007786 pmid: 23546159
38 Fukuchi Y, Maeda J. Characteristics of rational harmonic modelocked shortcavity fiber ring laser using a bismuthoxide-based erbiumdoped fiber and a bismuthoxidebased highly nonlinear fiber. Optics Express, 2011, 19(23): 22502–22509
https://doi.org/10.1364/OE.19.022502 pmid: 22109128
39
40 Webb A S, Boyland A J, Standish R J, Yoo S, Sahu J K, Payne D N. MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers. Journal of Non-Crystalline Solids, 2010, 356(18-19): 848–851
https://doi.org/10.1016/j.jnoncrysol.2010.01.008
41 Nagel S R, Macchesney J B, Walker K L. An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE Journal of Quantum Electronics, 1982, 18(4): 459–476
https://doi.org/10.1109/JQE.1982.1071596
42 Dianov E M. Amplification in extended transmission bands. In: Proceedings of OFC 2012 OSA, Los Angeles, USA, 2012
43 Razdobreev I, Bigot L. On the multiplicity of bismuth active centres in germano-aluminosilicate preform. Optical Materials, 2011, 33(6): 973–977
https://doi.org/10.1016/j.optmat.2010.12.013
44 Peng G D, Luo Y, Zhang J, Wen J, Yan B, Canning J. Recent development of new active optical fibres for broadband photonic applications. In: Proceedings of 4th International Conference on Photonics, IEEE, 2013, 5–9
45 Luo Y, Zhang J, Zareanborji A, Wen J, Canning J, Peng G D. Developing Bi/Er/Al codoped optical fibre with high Bi concentration for ultrabroadband emission. In: Proceedings of 37th Australian Conference on Optical Fibre Technology, Engineering Australian, Sydney, 2012, 117
46 Sathi Z, Yang H, Luo Y, Zhang J, Peng G D. Ytterbium related effects in bismuth/erbium/ytterbium co-doped germanosilicate fibres. In: Proceedings of OptoElectronics and Communications Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT 2014), IEEE, Melbourne, Australia, 2014, WEPS2–65
47 Wen J, Wang J, Dong Y, Chen N, Luo Y, Peng G D, Pang F, Chen Z, Wang T. Photoluminescence properties of Bi/Al-codoped silica optical fiberbased on atomic layer deposition method. Applied Surface Science, 2015, 349: 287–291
https://doi.org/10.1016/j.apsusc.2015.04.138
48 Ni J, Peng G D, Wang C, Luo Y, Xiao G, Wei S, Liu H, Liu T. Study on pump optimizing for Bi/Er co-doped optical fiber. Measurement, 2016, 79: 160–163
https://doi.org/10.1016/j.measurement.2015.10.003
49 Zareanborji A, Yang H Y, Sathi Z, Luo Y H, Town G, Peng G D. Time-resolved fluorescence measurement based on spectroscopy and DSP techniques for Bi/Er codoped fibre characterization. In: Proceedings of OptoElectronics and Communications Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT 2014), IEEE, Melbourne, Australia, 2014, TU6C–5
50 Zareanborji A, Yang H Y, Town G, Luo Y H, Peng G D. Simple and accurate fluorescence lifetime measurement scheme using traditional time-domain spectroscopy and modern digital signal processing. Journal of Lightwave Technology, 2016, 34(21): 5033–5043
https://doi.org/10.1109/JLT.2016.2603166
51 Firstov S V, Khopin V F, Bufetov I A, Firstova E G, Guryanov A N, Dianov E M. Combined excitation-emission spectroscopy of bismuth active centers in optical fibers. Optics Express, 2011, 19(20): 19551–19561
https://doi.org/10.1364/OE.19.019551 pmid: 21996896
52 Nykolak G, Becker P C, Shmulovich J, Wong Y H, DiGiovanni D J, Bruce A J. Concentration-dependent 4I13/2 lifetimes in Er3+-doped fibers and Er3+-doped planar waveguides. IEEE Photonics Technology Letters, 1993, 5(9): 1014–1016
https://doi.org/10.1109/68.257176
53 Zhou Y, Gai N, Wang J, Chen F, Yang G. Effect of Ce3+(Eu3+) codoping on the spectroscopic properties of Er3+ in bismuth-germanate glass. Optical Materials, 2009, 31(11): 1595–1599
https://doi.org/10.1016/j.optmat.2009.03.007
54 Digonnet M J F. Rare-earth-doped fiber lasers and amplifiers. 2nd, devised and expanded. New York: CRC Press, 2002, Chap. 2
55 Bufetov I A, Dianov E M. Bi-doped fiber lasers. Laser Physics Letters, 2009, 6(7): 487–504
https://doi.org/10.1002/lapl.200910025
56 Fujimoto Y, Nakatsuka M. 27Al NMR structural study on aluminum coordination state in bismuth doped silica glass. Journal of Non-Crystalline Solids, 2006, 352(21–22): 2254–2258
https://doi.org/10.1016/j.jnoncrysol.2006.02.047
57 Riumkin K E, Melkumov M A, Varfolomeev I A, Shubin A V, Bufetov I A, Firstov S V, Khopin V F, Umnikov A A, Guryanov A N, Dianov E M. Excited-state absorption in various bismuth-doped fibers. Optics Letters, 2014, 39(8): 2503–2506
https://doi.org/10.1364/OL.39.002503 pmid: 24979029
58 Sathi Z M, Zhang J, Luo Y, Canning J, Peng G D. Spectral properties and role of aluminiumrelated bismuth active centre (BAC-Al) in bismuth and erbium co-doped fibres. Optical Materials Express, 2015, 5(5): 1195–1209
https://doi.org/10.1364/OME.5.001195
59 Zareanborji A, Luo Y, Peng G D. Characterization and assessment of multiple bismuth active centres in Bi/Er doped fiber. In: Proceedings of 2nd International Conference on Opto-Electronics and Applied Optics (IEM OPTRONIX), 2015, 1–5
60 Yan B, Luo Y, Zareanborji A, Xiao G, Peng G D, Wen J. Performance comparison of bismuth/erbium co-doped optical fibre (BEDF) by 830 nm and 980 nm pumping. Journal of Optics, 2016, 18(10): 105705
https://doi.org/10.1088/2040-8978/18/10/105705
61 Canning J, Liu W, Cook K. Annealing and regeneration in optical fibres. In: Proceedings of Asia Communications and Photonics Conference 2015, Optical Society of America, Hong Kong, 2015, AM3C.2
62 Wei S, Luo Y, Ding M, Cai F, Zhao Q, Peng G D. Annealing effects on bismuth active centers in Bi/Er co-doped fiber. In: Proceedings of Conference on Lasers and Electro-Optics, Optical Society of America, San Jose, California, 2016, JTh2A.75
63 Yan B, Luo Y, Sporea D, Mihai L, Negut D, Sang X, Wen J, Xiao G, Peng G. Gamma radiation-induced formation of bismuth related active centre in Bi/Er/Yb co-doped fibre. In: Proceedings of Asia Communications and Photonics Conference 2015, Optical Society of America, Hong Kong, 2015, ASu2A.56
64 Wen J, Liu W, Dong Y, Luo Y, Peng G D, Chen N, Pang F, Chen Z, Wang T. Radiation-induced photoluminescence enhancement of Bi/Al-codoped silica optical fibers via atomic layer deposition. Optics Express, 2015, 23(22): 29004–29013
https://doi.org/10.1364/OE.23.029004 pmid: 26561169
65 Sporea D, Mihai L, Neguţ D, Luo Y, Yan B, Ding M, Wei S, Peng G D. r irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres. Scientific Reports, 2016, 6(1): 29827
https://doi.org/10.1038/srep29827 pmid: 27440386
66 Cook K, Shao L Y, Canning J, Wang T, Luo Y, Peng G D. Bragg gratings in few-mode Er/Al//Bi/P co-doped germanosilicate ring-core fibre. In: Proceedings of 22nd International Conference on Optical Fiber Sensors, SPIE, Beijing, China, 2012
67 Qi H, Luo Y, Yang H, Zhang J, Canning J, Peng G D. Photosensitivity, phase shifted grating and DFB fibre laser in bismuth/erbium co-doped germanosilicate optical fibre. In: Proceedings of 19th OptoElectronics and Communications Conference, OECC 2014 and the 39th Australian Conference on Optical Fibre Technology, ACOFT 2014, IEEE Computer Society, Melbourne, VIC, Australia, 2014, 495–497
68 Ding M, Wei S, Luo Y, Peng G D. Reversible photo-bleaching effect in Bi/Er co-doped optical fiber. In: Proceedings of Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), Optical Society of America, Sydney, 2016, ATh2C.3
69 Xu B, Zhou S, Guan M, Tan D, Teng Y, Zhou J, Ma Z, Hong Z, Qiu J. Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses. Optics Express, 2011, 19(23): 23436–23443
https://doi.org/10.1364/OE.19.023436 pmid: 22109220
70 Denker B I, Galagan B I, Musalitin A M, Shulman I L, Sverchkov S E, Dianov E M. Alternative ways to form IR luminescence centers in Bi-doped glass. Laser Physics, 2011, 21(4): 746–749
https://doi.org/10.1134/S1054660X1107005X
71 Kononenko V, Pashinin V, Galagan B, Sverchkov S, Denker B, Konov V, Dianov E M. Activation of color centers in bismuth glass by femtosecond laser radiation. Laser Physics, 2011, 21(9): 1585–1592
https://doi.org/10.1134/S1054660X1116002X
72 Xu J, Zhao H, Su L, Yu J, Zhou P, Tang H, Zheng L, Li H. Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:a-BaB2O4 single crystal. Optics Express, 2010, 18(4): 3385–3391
https://doi.org/10.1364/OE.18.003385 pmid: 20389348
73 Wei S, Luo Y, Ding M, Cai F, Xiao G, Fan D, Zhao Q, Peng G D. Thermal effect on attenuation and luminescence of Bi/Er co-doped fiber. IEEE Photonics Technology Letters, 2017, 29(1): 43–46
https://doi.org/10.1109/LPT.2016.2627566
74 Yan B, Luo Y, Sporea D, Mihai L, Neguţ D, Ding M, Wang C, Wen J, Sang X, Peng G D. Enhancing gamma radiation effect in Bi/Er doped optical fibre by co-doping Yb. In: Proceedings of Asia Communications and Photonics Conference 2016, Optical Society of America, Wuhan, China, 2016
75 Ban C, Limberger H G, Bulatov I L, Dvoyrin V V, Mashinsky V M, Dianov E M. Infrared luminescence enhacement by UV-irradiation of H2-loaded Bi-Al-doped fiber. In: Proceedings of ECOC, 2009
76 Violakis G, Limberger H G, Mashinsky V M, Dianov E M. Dose dependence of luminescence increase in H2-loaded Bi-Al co-doped optical fibers by cw 244-nm and pulsed 193-nm laser irradiation. In: Proceedings of OFC, Optical Society of America, 2013
77 Song D, Zhang J, Fang S, Sun W, Sathi Z M, Luo Y, Peng G D. Bismuth and erbium co-doped optical fiber for a white light fiber source. Optics and Photonics Journal, 2013, 3(02): 175–178
https://doi.org/10.4236/opj.2013.32B042
78 Yan B, Luo Y, Zareanborji A, Zhang J, Canning J, Peng G D. 1350- 1470 nm optical amplification with bismuth/erbium co-doped fibre. In: Proceedings of Australia and New Zealand Conference on Optics and Photonics (ANZCOP) Conference 2013, Engineering Australia, Perth, Australia, 2013
Related articles from Frontiers Journals
[1] Dagong JIA, Haiwei ZHANG, Zhe JI, Neng BAI, Guifang LI. Optical fiber amplifiers for space-division multiplexing[J]. Front Optoelec, 2012, 5(4): 351-357.
[2] Jiangming XU, Xiaolin DONG, Jinyong LENG, Pu ZHOU, Jing HOU. Efficient, 62.5 Watts all-fiber single-mode 1091 nm MOPA laser[J]. Front Optoelec Chin, 2011, 4(4): 426-429.
[3] Xu ZHANG, Deming LIU, Hairong LIU, Qizhen SUN, Zhifeng SUN, Ziheng XU, Wengang WANG. High-power EDFA applied in distributed optical fiber Raman temperature sensor system[J]. Front Optoelec Chin, 2009, 2(2): 210-214.
[4] Guoli CAI, Wei JIAN. Temperature sensing capacity of fiber Bragg grating at liquid nitrogen temperature[J]. Front Optoelec Chin, 2008, 1(3-4): 223-225.
[5] GUO Tuan, ZHAO Qida, LIU Lihui, HUANG Guiling, XUE Lifang, LI Guoyu, LIU Bo, ZHANG Weigang, KAI Guiyun, YUAN Shuzhong, DONG Xiaoyi. Light intensity-referred and temperature-insensitive fiber Bragg grating dynamic pressure sensor[J]. Front. Optoelectron., 2008, 1(1-2): 113-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed