Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (1) : 60-70     DOI: 10.1007/s12200-016-0567-6
Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells
Jie SHI1,2,Zhaofei CHAI1,Runli TANG1,Huiyang LI1,Hongwei HAN3,Tianyou PENG1,Qianqian LI1,*(),Zhen LI1,*()
1. Department of Chemistry, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Wuhan University, Wuhan 430072, China
2. Hubei Key Laboratory of Oilcrops Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
3. Michael Gr?tzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(1520 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Four organic sensitizers containing quinoxaline or benzoxadiazole as an auxiliary electron acceptor in conjugated bridge were synthesized and utilized for dye-sensitized solar cells (DSSCs). It was found that the incorporation of different electron-withdrawing moieties can affect the absorption spectra, electronic properties, the interfacial interactions and then the overall conversion efficiencies significantly. Therefore, the appropriate selection of the auxiliary acceptor was important to optimize the photovoltaic performance of solar cells. Among these sensitizers, LI-44 based solar cell showed the best photovoltaic performance: a shortcircuit photocurrent density (Jsc) of 13.90 mA/cm2, an open-circuit photovoltage (Voc) of 0.66 V, and a fill factor (FF) of 0.66, corresponding to an overall conversion efficiency of 6.10% under standard global AM 1.5 solar light conditions.

Keywords dye-sensitized solar cells (DSSCs)      auxiliary electron acceptor      quinoxaline      benzoxadiazole     
Corresponding Authors: Qianqian LI,Zhen LI   
Just Accepted Date: 11 January 2016   Online First Date: 18 February 2016    Issue Date: 18 March 2016
 Cite this article:   
Jie SHI,Zhaofei CHAI,Runli TANG, et al. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
E-mail this article
E-mail Alert
Articles by authors
Zhaofei CHAI
Runli TANG
Huiyang LI
Hongwei HAN
Tianyou PENG
Qianqian LI
Zhen LI
Fig.1  Chemical structures of the four organic sensitizers
Fig.2  Scheme 1 Synthetic routes of the four organic sensitizers
Fig.3  UV-vis spectra of the four organic sensitizers in CH2Cl2
Fig.4  UV-vis spectra of the four organic sensitizers on TiO2 films
dyelmaxa/nmea/(M-1·cm-1)lmaxb/nmE0-0c/eVEoxd/Vvs NHEErede/Vvs NHE
LI-44499467004902.090.94- 1.15
LI-45492370004882.141.19- 0.95
LI-46530277005281.950.95- 1.00
LI-47532440005311.911.20- 0.72
Tab.1  Absorbance and electrochemical properties of the sensitizers
Fig.5  Frontier orbitals of the sensitizers optimized at the B3LYP/6-31G* level
Fig.6  Spectra of monochrmatic IPCE for DSSCs based on these sensitizers
Fig.7  Current density-voltage characteristics obtained with a nanocrystalline TiO2 film supported on FTO conducting glass and derivatized with monolayer of sensitizers
Fig.8  Dark-current density-potential curves of DSSCs based on these sensitizers
sensitizerCDCA bJsc/(mA·cm-2)Voc/VFFh/%
1 mM11.900.650.685.35
5 mM10.930.640.624.35
1 mM9.430.610.714.03
5 mM8.560.630.683.67
1 mM3.100.520.731.18
5 mM2.890.520.681.02
1 mM3.580.560.771.56
5 mM1.730.560.720.70
Tab.2  Performance data of DSSCs based on the four sensitizers a
Fig.9  EIS for DSSCs based on the sensitizers. (a) Nyquist plots in the dark; (b) Nyquist plots under illumination
Fig.10  Electron lifetime fitted from impedance spectra under a series of applied potentials
1 Wang,E. T., Sandberg,R., LuoS., Khrebtukova,I., Zhang,L., Mayr,C., Kingsmore,S. F., Schroth,G. P. and Burge,C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476
doi: 10.1038/nature07509 pmid: 18978772
2 Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
doi: 10.1021/cr900356p pmid: 20831177
3 Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells. Nature Photonics, 2012, 6(3): 162–169
doi: 10.1038/nphoton.2012.22
4 Joly D, Pellejà L, Narbey S, Oswald F, Chiron J, Clifford J N, Palomares E, Demadrille R. A robust organic dye for dye sensitized solar cells based on iodine/iodide electrolytes combining high efficiency and outstanding stability. Scientific Reports, 2014, 4: 4033
doi: 10.1038/srep04033 pmid: 24504344
5 Joly D, Pellejà L, Narbey S, Oswald F, Meyer T, Kervella Y, Maldivi P, Clifford J N, Palomares E, Demadrille R. Metal-free organic sensitizers with narrow absorption in the visible for solar cells exceeding 10% efficiency. Energy & Environmental Science, 2015, 8(7): 2010–2018
doi: 10.1039/C5EE00444F
6 Kang X, Zhang J, O’Neil D, Rojas A J, Chen W, Szymanski P, Marder S R, El-Sayed M A. Effect of molecular structure perturbations on the performance of the D-A-p-A dye sensitized solar cells. Chemistry of Materials, 2014, 26(15): 4486–4493
doi: 10.1021/cm5016355
7 Cui Y, Wu Y, Lu X, Zhang X, Zhou G, Miapeh F B, Zhu W, Wang Z S. Incorporating benzotriazole moiety to construct D-A-p-A organic sensitizers for solar cells: significant enhancement of open-circuit photovoltage with long alkyl group. Chemistry of Materials, 2011, 23(19): 4394–4401
doi: 10.1021/cm202226j
8 Pei K, Wu Y, Islam A, Zhang Q, Han L, Tian H, Zhu W. Constructing high-efficiency D-A-p-A-featured solar cell sensitizers: a promising building block of 2,3-diphenylquinoxaline for antiaggregation and photostability. ACS Applied Materials & Interfaces, 2013, 5(11): 4986–4995
doi: 10.1021/am400754d pmid: 23688179
9 Lu X, Feng Q, Lan T, Zhou G, Wang Z S. Molecular engineering of quinoxaline-based organic sensitizers for highly efficient and stable dye-sensitized solar cells. Chemistry of Materials, 2012, 24(16): 3179–3187
doi: 10.1021/cm301520z
10 Shi J, Chen J, Chai Z, Wang H, Tang R, Fan K, Wu M, Han H, Qin J, Peng T, Li Q, Li Z. High performance organic sensitizers based on 11,12-bis(hexyloxy) dibenzo[a,c]phenazine for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22(36): 18830–18838
doi: 10.1039/c2jm33833e
11 Yang J, Ganesan P, Teuscher J, Moehl T, Kim Y J, Yi C, Comte P, Pei K, Holcombe T W, Nazeeruddin M K, Hua J, Zakeeruddin S M, Tian H, Grätzel M. Influence of the donor size in D-p-A organic dyes for dye-sensitized solar cells. Journal of the American Chemical Society, 2014, 136(15): 5722–5730
doi: 10.1021/ja500280r pmid: 24655036
12 Li X, Hu Y, Sanchez-Molina I, Zhou Y, Yu F, Haque S A, Wu W, Hua J, Tian H, Robertson N. Insight into quinoxaline containing D-p-A dyes for dye-sensitized solar cells with cobalt and iodine based electrolytes: the effect of p-bridge on the HOMO energy level and photovoltaic performance. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(43): 21733–21743
doi: 10.1039/C5TA07254A
13 Ying W, Guo F, Li J, Zhang Q, Wu W, Tian H, Hua J. Series of new D-A-p-A organic broadly absorbing sensitizers containing isoindigo unit for highly efficient dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2012, 4(8): 4215–4224
doi: 10.1021/am300925e pmid: 22817332
14 Zhu W, Wu Y, Wang S, Li W, Li X, Chen J, Wang Z, Tian H. Organic D-A-p-A solar cell sensitizers with improved stability and spectral response. Advanced Functional Materials, 2011, 21(4): 756–763
doi: 10.1002/adfm.201001801
15 Wu Y, Marszalek M, Zakeeruddin S M, Zhang Q, Tian H, Grätzel M, Zhu W. High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D-A-p-A featured organic indoline dyes. Energy & Environmental Science, 2012, 5(8): 8261–8272
doi: 10.1039/c2ee22108j
16 Wu Y, Zhu W. Organic sensitizers from D-p-A to D-A-p-A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chemical Society Reviews, 2013, 42(5): 2039–2058
doi: 10.1039/C2CS35346F pmid: 23192709
17 Eom Y K, Choi I T, Kang S H, Lee J, Kim J, Ju M J, Kim H K. Thieno[3, 2-b] benzothiophene derivative as a new p-bridge unit in D-p-A structural organic sensitizers with over 10.47% efficiency for dye-sensitized solar cells. Advanced Energy Materials, 2015, 5(15): 1500300
doi: 10.1002/aenm.201500300
18 Wu Y, Zhu W H, Zakeeruddin S M, Grätzel M. Insight into D-A-p-A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2015, 7(18): 9307–9318
doi: 10.1021/acsami.5b02475 pmid: 25899976
19 Chai Z, Wu M, Fang M, Wan S, Xu T, Tang R, Xie Y, Mei A, Han H, Li Q, Li Z. Similar or totally different: the adjustment of the twist conformation through minor structural modification, and dramatically improved performance for dye-sensitized solar cell. Advanced Energy Materials, 2015, 5(18): 1500846
doi: 10.1002/aenm.201500846
20 Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser J E, Humphry-Baker R, Zakeeruddin S M, Grätzel M, Bäuerle P. Significant improvement of dye-sensitized solar cell performance by small structural modification in p-conjugated donor-acceptor dyes. Advanced Functional Materials, 2012, 22(6): 1291–1302
doi: 10.1002/adfm.201102519
21 Yen Y S, Chou H H, Chen Y C, Hsu C Y, Lin J T. Recent developments in molecule-based organic materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22(18): 8734–8747
doi: 10.1039/c2jm30362k
22 Liang M, Chen J. Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews, 2013, 42(8): 3453–3488
doi: 10.1039/c3cs35372a pmid: 23396530
23 Koumura N, Wang Z S, Mori S, Miyashita M, Suzuki E, Hara K. Alkyl-functionalized organic dyes for efficient molecular photovoltaics. Journal of the American Chemical Society, 2006, 128(44): 14256–14257
doi: 10.1021/ja0645640 pmid: 17076489
24 Yamamoto T, Sugiyama K, Kushida T, Inoue T, Kanbara T. Preparation of new electron-accepting p-conjugated polyquinoxalines. Chemical and electrochemical reduction, electrically conducting properties, and use in light-emitting diodes. Journal of the American Chemical Society, 1996, 118(16): 3930–3937
doi: 10.1021/ja954173d
25 Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M. Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. Journal of the American Chemical Society, 2008, 130(2): 732–742
doi: 10.1021/ja0771989 pmid: 18095689
26 Li H, Yang Y, Hou Y, Tang R, Duan T, Chen J, Wang H, Han H, Peng T, Chen X, Li Q, Li Z. Organic sensitizers featuring 9,10-diaryl-substituted anthracene unit. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1776–1784
doi: 10.1021/sc500234a
27 Li Q, Shi J, Li H, Li S, Zhong C, Guo F, Peng M, Hua J, Qin J, Li Z. Novel pyrrole-based dyes for dye-sensitized solar cells: from rod-shape to “H” type. Journal of Materials Chemistry, 2012, 22(14): 6689–6696
doi: 10.1039/c2jm30200d
28 Li H, Hou Y, Yang Y, Tang R, Chen J, Wang H, Han H, Peng T, Li Q, Li Z. Attempt to improve the performance of pyrrole-containing dyes in dye sensitized solar cells by adjusting isolation groups. ACS Applied Materials & Interfaces, 2013, 5(23): 12469–12477
doi: 10.1021/am403668d pmid: 24215468
29 Frisch G W T M J, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A,Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian, Inc., Wallingford CT. 2009
30 Salvatori P, Marotta G, Cinti A, Anselmi C, Mosconi E, De Angelis F. Supramolecular interactions of chenodeoxycholic acid increase the efficiency of dye-sensitized solar cells based on a cobalt electrolyte. Journal of Physical Chemistry C, 2013, 117(8): 3874–3887
doi: 10.1021/jp4003577
31 Tang J, Hua J, Wu W, Li J, Jin Z, Long Y, Tian H. New starburst sensitizer with carbazole antennas for efficient and stable dye-sensitized solar cells. Energy & Environmental Science, 2010, 3(11): 1736–1745
doi: 10.1039/c0ee00008f
32 Wang Q, Moser J E, Grätzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. Journal of Physical Chemistry B, 2005, 109(31): 14945–14953
doi: 10.1021/jp052768h pmid: 16852893
33 Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. Journal of Physical Chemistry B, 2006, 110(28): 13872–13880
doi: 10.1021/jp061693u pmid: 16836336
Related articles from Frontiers Journals
[1] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[2] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[3] Yaoguang RONG, Guanghui LIU, Heng WANG, Xiong LI, Hongwei HAN. Monolithic all-solid-state dye-sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 359-372.
[4] Dehua XIONG, Wei CHEN. Recent progress on tandem structured dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(4): 371-389.
Full text