Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (1) : 93-98     DOI: 10.1007/s12200-015-0499-6
RESEARCH ARTICLE |
Enhanced absorption of solar cell made of photonic crystal by geometrical design
Asma OUANOUGHI,Abdesselam HOCINI(),Djamel KHEDROUCHE
Laboratoire d’Analyse des Signaux et Systèmes, Department of Electronics, University of Mohamed Boudiaf of M’sila BP.166, Route Ichebilia, M’sila 28000, Algeria
Download: PDF(438 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, via numerical simulation we designed the geometry of solar cell made by one-dimensional (1D) and two-dimensional (2D) photonic crystals with two kinds of materiel (silicon (Si) and hydrogenated amorphous silicon (a-Si:H)) in order to enhance its absorption. The absorption characteristics of light in the solar cell structures are simulated by using finite-difference time-domain (FDTD) method. The calculation results show that the enhancement of absorption in patterned structure is apparent comparing to the unpatterned one, which proves the ability of the structure to produce photonic crystal solar cell. We found solar cell geometries as a 2D photonic crystal enable to increase the absorption between 380 and 750 nm.

Keywords finite-difference time-domain      two-dimensional (2D) photonic crystals      solar cell     
Corresponding Authors: Abdesselam HOCINI   
Just Accepted Date: 12 June 2015   Online First Date: 17 August 2015    Issue Date: 18 March 2016
 Cite this article:   
Asma OUANOUGHI,Abdesselam HOCINI,Djamel KHEDROUCHE. Enhanced absorption of solar cell made of photonic crystal by geometrical design[J]. Front. Optoelectron., 2016, 9(1): 93-98.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-015-0499-6
http://journal.hep.com.cn/foe/EN/Y2016/V9/I1/93
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Asma OUANOUGHI
Abdesselam HOCINI
Djamel KHEDROUCHE
Fig.1  (a) Structure of solar cell made by unpatterned layer on a glass substrate; (b) one-dimensional photonic crystal (1D PhC); (c) two-dimensional photonic crystal (2D PhC), with a square and triangular array of circular holes
Fig.2  Absorption spectra of the unpatterned layer of Si and a-Si:H with thickness H = 100 nm
Fig.3  Integrated absorption efficiency of a 100 nm thick a-Si:H layer in glass, as a function of the 1D PhC parameters L (in μm) and ff (in %)
Fig.4  Absorption spectra of 1D PhCs made of Si and a-Si:H with the same thickness H = 100 nm
Fig.5  Absorption spectra of 2D PhC Si square array of circular holes with different lattice constants (L) for thickness H = 100 nm (Optical simulation performed under normal incidence)
Fig.6  Absorption spectra of 2D PhC Si triangular array of circular holes with different lattice constants (L) for thickness H = 100 nm (Optical simulation performed under normal incidence)
Fig.7  Effect of 2D PhC square array of circular holes in TE mode, with a fixed filling factor and varying lattice constants (L) on the absorption spectra of a-Si:H layer
Fig.8  Effect of 2D PhC triangular array of circular holes, with a fixed filling factor and varying lattice constants (L) on the absorption spectra of a- Si:H layer
1 Nelson J. The Physics of Solar Cells. London: Imperial College Press, 2003
2 Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213
doi: 10.1038/nmat2629
3 Pala R A, White J, Barnard E, Liu J, Brongersma M L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Advanced Materials, 2009, 21(34): 3504–3509
doi: 10.1002/adma.200900331
4 Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kimerling L C, Alamariu B A. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector. Applied Physics Letters, 2006, 89(11): 111111
doi: 10.1063/1.2349845
5 Seassal C, Park Y, Fave A, Drouard E, Fourmond E, Kaminski A, Lemiti M, Letartre X, Viktorovitch P. Photonic crystal assistedultra-thin siliconphotovoltaic solarcell. Proceedings of the Society for Photo-Instrumentation Engineers, 2008, 7002: 700207
doi: 10.1117/12.781284
6 Zanotto S, Liscidini M, Andreani L C. Light trapping regimes in thin-film silicon solar cells with a photonic pattern. Optics Express, 2010, 18(5): 4260–4274
doi: 10.1364/OE.18.004260
7 Gomard G, Drouard E, Letartre X, Meng X, Kaminski A, Fave A, Lemiti M, Garcia-Caurel E, Seassal C. Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells. Journal of Applied Physics, 2010, 108(12): 123102
doi: 10.1063/1.3506702
8 Domınguez S, García O, Ezquer M, Rodríguez M J, Lagunas A R, Pérez-Conde J, Bravo J . Optimization of 1D photonic crystals to minimize the reflectance of silicon solar cells. Photonics and Nanostructures– Fundamentals and Applications, 2012, 10(1): 46–53
doi: 10.1016/j.photonics.2011.07.001
9 Papet P, Nichiporuk O, Kaminski A, Rozier Y, Kraiem J, Lelievre J F, Chaumartin A, Fave A, Lemiti M. Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Solar Energy Materials and Solar Cells, 2006, 90(15): 2319–2328
doi: 10.1016/j.solmat.2006.03.005
10 Bermel P, Luo C, Zeng L, Kimerling L C, Joannopoulos J D. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Optics Express, 2007, 15(25): 16986–17000
doi: 10.1364/OE.15.016986
11 El Daif O, Drouard E, Gomard G, Kaminski A, Fave A, Lemiti M, Ahn S, Kim S, Roca I, Cabarrocas P, Jeon H, Seassal C. Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell. Optics Express, 2010, 18(S3): A293–A299
doi: 10.1364/OE.18.00A293
12 Bielawny A, Üpping J, Wehrspohn R B. Spectral properties of intermediate reflectors in micromorph tandem cells. Solar Energy Materials and Solar Cells, 2009, 93(11): 1909–1912
doi: 10.1016/j.solmat.2009.07.012
13 RSoft Design Group. FullWAVE, Inc. 200 Executive Blvd. Ossining, NY 10562
14 El Daif O, Drouard E, Gomard G, Meng X, Kaminski A, Fave A, Lemiti M, Caurel E G, Roca I, Cabarrocas P, Ahn S, Jeon H, Seassal C. Absorbing photonic crystals for thin film photovoltaics. Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7713: 771308
doi: 10.1117/12.854035
Related articles from Frontiers Journals
[1] Zhuo DENG,Jiqiang NING,Rongxin WANG,Zhicheng SU,Shijie XU,Zheng XING,Shulong LU,Jianrong DONG,Hui YANG. Influence of temperature and reverse bias on photocurrent spectrum and supra-bandgap spectral response of monolithic GaInP/GaAs double-junction solar cell[J]. Front. Optoelectron., 2016, 9(2): 306-311.
[2] Yinan ZHANG,Min GU. Plasmonic light trapping for wavelength-scale silicon solar absorbers[J]. Front. Optoelectron., 2016, 9(2): 277-282.
[3] Yuanyuan ZHOU,Hector F. GARCES,Nitin P. PADTURE. Challenges in the ambient Raman spectroscopy characterization of methylammonium lead triiodide perovskite thin films[J]. Front. Optoelectron., 2016, 9(1): 81-86.
[4] Jie SHI,Zhaofei CHAI,Runli TANG,Huiyang LI,Hongwei HAN,Tianyou PENG,Qianqian LI,Zhen LI. Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 60-70.
[5] Xiaoli ZHENG,Haining CHEN,Zhanhua WEI,Yinglong YANG,He LIN,Shihe YANG. High-performance, stable and low-cost mesoscopic perovskite (CH3NH3PbI3) solar cells based on poly(3-hexylthiophene)-modified carbon nanotube cathodes[J]. Front. Optoelectron., 2016, 9(1): 71-80.
[6] Heng LI,Wei JING,Dapeng YU,Qing ZHAO. Micro-scale hierarchical photoanode for quantum-dot-sensitized solar cells based on TiO2 nanowires[J]. Front. Optoelectron., 2016, 9(1): 53-59.
[7] Xiaoyu ZHANG,Michael Grätzel,Jianli HUA. Donor design and modification strategies of metal-free sensitizers for highly-efficient n-type dye-sensitized solar cells[J]. Front. Optoelectron., 2016, 9(1): 3-37.
[8] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
[9] Xihua WANG. Recent progress in colloidal quantum dot photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 241-251.
[10] Cheng ZHANG,Jie ZHONG,Jiang TANG. Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents[J]. Front. Optoelectron., 2015, 8(3): 252-268.
[11] Yue QIAN,Rong LIU,Xiujuan JIN,Bin LIU,Xianfu WANG,Jin XU,Zhuoran WANG,Gui CHEN,Junfeng CHAO. Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells[J]. Front. Optoelectron., 2015, 8(2): 220-228.
[12] Kunpeng MA, Xiangbin ZENG, Qingsong LEI, Junming XUE, Yanzeng WANG, Chenguang ZHAO. Texturization and rounded process of silicon wafers for heterojunction with intrinsic thin-layer solar cells[J]. Front Optoelec, 2014, 7(1): 46-52.
[13] Jun HAN, Ying ZHOU, Yang Tian, Ziheng HUANG, Xiaohua WANG, Jie ZHONG, Zhe XIA, Bo YANG, Haisheng SONG, Jiang TANG. Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices[J]. Front Optoelec, 2014, 7(1): 37-45.
[14] Heng WANG, Peng XIANG, Mi XU, Guanghui LIU, Xiong LI, Zhiliang KU, Yaoguang RONG, Linfeng LIU, Min HU, Ying YANG, Hongwei HAN. High efficiency monobasal solid-state dye-sensitized solar cell with mesoporous TiO2 beads as photoanode[J]. Front Optoelec, 2013, 6(4): 413-417.
[15] Kun CAO, Mingkui WANG. Recent developments in sensitizers for mesoporous sensitized solar cells[J]. Front Optoelec, 2013, 6(4): 373-385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed