Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2015, Vol. 8 Issue (2) : 152-162     DOI: 10.1007/s12200-015-0479-x
Resolution and contrast enhancements of optical microscope based on point spread function engineering
Yue FANG,Cuifang KUANG,Ye MA,Yifan WANG,Xu LIU()
State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
Download: PDF(2480 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Point spread function (PSF) engineering-based methods to enhance resolution and contrast of optical microscopes have experienced great achievements in the last decades. These techniques include: stimulated emission depletion (STED), time-gated STED (g-STED), ground-state depletion microscopy (GSD), difference confocal microscopy, fluorescence emission difference microscopy (FED), switching laser mode (SLAM), virtual adaptable aperture system (VAAS), etc. Each affords unique strengths in resolution, contrast, speed and expenses. We explored how PSF engineering generally could be used to break the diffraction limitation, and concluded that the common target of PSF engineering-based methods is to get a sharper PSF. According to their common or distinctive principles to reshape the PSF, we divided all these methods into three categories, nonlinear PSF engineering, linear PSF engineering, and linear-based nonlinear PSF engineering and expounded these methods in classification. Nonlinear effect and linear subtraction is the core techniques described in this paper from the perspective of PSF reconstruction. By comparison, we emphasized each method’s strengths, weaknesses and biologic applications. In the end, we promote an expectation of prospective developing trend for PSF engineering.

Keywords super-resolution      optical imaging      point spread function (PSF) engineering      non-linear effects      linear subtraction     
Corresponding Authors: Xu LIU   
Issue Date: 24 June 2015
 Cite this article:   
Yue FANG,Cuifang KUANG,Ye MA, et al. Resolution and contrast enhancements of optical microscope based on point spread function engineering[J]. Front. Optoelectron., 2015, 8(2): 152-162.
E-mail this article
E-mail Alert
Articles by authors
Cuifang KUANG
Yifan WANG
Fig.1  (a) Schematic image of a point-like object (left) and two close point-like objects (right); (b) image of point-like objects of (a) taken with a conventional (confocal) microscopy; (c) targeted image of point-like objects of (a); (d) conventional (confocal) light microscope’s PSF’s profile and targeted PSF’s profile
Fig.2  Profiles (1)-(4) show the spatial region in which the molecules are allowed to be state A (fluorescent state), if the region is illuminated with a doughnut-shaped patterns focused by a standing wave of light which drives molecules from A (fluorescent state) to B (non-fluorescent state) with peak intensities I 0 = 10 I sat , 50 I sat , 100 I sat and 500 I sat respectively whose corresponding cross section profiles are (i)-(iv) [ 30]
Fig.3  (a) Energy diagram of STED microscopes; (b) schematic representation of a STED microscope. A phase modulation mask is used to create a doughnut-shaped depletion beam overlapping the excitation laser beam
Fig.4  (a) Schematic representation of a difference confocal microscopy; (b) PSF profiles of conventional (large hole) microscopy system, confocal microscopy system and the subtractive result with α of 1/2
Fig.5  Principle of linear subtraction of a doughnut PSF from a solid PSF. (a) Solid PSF pattern; (b) doughnut-shaped PSF pattern by a 2π phase modulation; (c) subtractive of the doughnut-shaped PSF from the solid PSF with a proper factor; (d) profile curves of the solid PSF, the doughnut-shaped PSF and the subtractive PSF
Fig.6  PSFs of the confocal, the STED and the subtraction image (δ=0.5), and it can be seen the subtractive PSF is sharper than STED’s PSF [22]
Fig.7  (a) Confocal image of 20 nm fluorescence beads; (b) STED image; (c) subtraction of the confocal from the STED with δ of 0.5; (d) g-STED image; (e) subtraction image of the STED from the g-STED with ? of 0.08; (f) b′, c′, d′, e′: magnified view of the region indicated by white box in (b), (c), (d), (e)
1 Martinez-Corral M, Caballero M T, Stelzer E H K, Swoger J. Tailoring the axial shape of the point spread function using the Toraldo concept. Optics Express, 2002, 10(1): 98–103
doi: 10.1364/OE.10.000098 pmid: 19424335
2 K?hler H. On Abbe’s theory of image formation in the microscope. Journal of Modern Optics, 1981, 28(12): 1691–1701
3 Toomre D, Bewersdorf J. A new wave of cellular imaging. Annual Review of Cell and Developmental Biology, 2010, 26(1): 285–314
doi: 10.1146/annurev-cellbio-100109-104048 pmid: 20929313
4 Bloembergen N. Nonlinear Optics. New York: Benjamin, 1965
5 Hell S W. Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering. In: Lakowicz J R, ed. Topics in Fluorescence Spectroscopy. New York: Springer US, 2002, 361–426
6 Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 1994, 19(11): 780–782
doi: 10.1364/OL.19.000780 pmid: 19844443
7 Hell S W, Kroug M. Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Applied Physics B, Lasers and Optics, 1995, 60(5): 495–497
doi: 10.1007/BF01081333
8 Irvine S E, Staudt T, Rittweger E, Engelhardt J, Hell S W. Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angewandte Chemie (International ed. in English), 2008, 120(14): 2725–2728
doi: 10.1002/anie.200705111 pmid: 18306194
9 Hofmann M, Eggeling C, Jakobs S, Hell S W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(49): 17565–17569
doi: 10.1073/pnas.0506010102 pmid: 16314572
10 Bossi M, Belov V, Polyakova S, Hell S W. Reversible red fluorescent molecular switches. Angewandte Chemie (International ed. in English), 2006, 45(44): 7462–7465
doi: 10.1002/anie.200602591 pmid: 17042053
11 Hao X, Kuang C, Li Y, Liu X. Reversible saturable optical transitions based fluorescence nanoscopy. Laser & Optoelectronic Progress, 2012, 49(3): 34–42
12 Sauer M. Reversible molecular photoswitches: a key technology for nanoscience and fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(27): 9433–9434
doi: 10.1073/pnas.0504264102 pmid: 15983383
13 Hell S W, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy. Current Opinion in Neurobiology, 2004, 14(5): 599–609
doi: 10.1016/j.conb.2004.08.015 pmid: 15464894
14 Kuang C, Li S, Liu W, Hao X, Gu Z, Wang Y, Ge J, Li H, Liu X. Breaking the diffraction barrier using fluorescence emission difference microscopy. Scientific Reports, 2013, 3: 1441
doi: 10.1038/srep01441
15 Farahani J N, Schibler M J, Bentolila L A. Stimulated emission depletion (STED) microscopy: from theory to practice. Microscopy: Science, Technology, Applications and Education, 2010, 2: 1539–1547
16 Hewlett S J, Wilson T. Resolution enhancement in three-dimensional confocal microscopy. Machine Vision and Applications, 1991, 4(4): 233–242
doi: 10.1007/BF01815300
17 Heintzmann R, Sarafis V, Munroe P, Nailon J, Hanley Q S, Jovin T M. Resolution enhancement by subtraction of confocal signals taken at different pinhole sizes. Micron, 2003, 34(6-7): 293–300
doi: 10.1016/S0968-4328(03)00054-4 pmid: 12932772
18 Wilson T, Hamilton D K. Difference confocal scanning microscopy. Optica Acta: International Journal of Optics, 1984, 31(4): 453–465
19 Sheppard C J R, Cogswell C J. Confocal microscopy with detector arrays. Journal of Modern Optics, 1990, 37(2): 267–279
doi: 10.1080/09500349014550331
20 Dehez H, Piché M, Koninck Y D. High resolution imaging with TM01 laser beams. International Society for Optics and Photonics, 2009, 7386: 738606
doi: 10.1117/12.839483
21 Dehez H, Piché M, De Koninck Y. Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging. Optics Express, 2013, 21(13): 15912–15925
doi: 10.1364/OE.21.015912 pmid: 23842378
22 Fang Y, Wang Y, Kuang C, Liu X. Enhancing the resolution and contrast in CW-STED microscopy. Optics Communications, 2014, 322: 169–174
doi: 10.1016/j.optcom.2014.02.042
23 Hao X, Kuang C, Gu Z, Li S, Ge J, Liu X. Optical super-resolution by subtraction of time-gated images. Optics Letters, 2013, 38(6): 1001–1003
doi: 10.1364/OL.38.001001 pmid: 23503287
24 Horrocks M H, Palayret M, Klenerman D, Lee S F. The changing point-spread function: single-molecule-based super-resolution imaging. Histochemistry and Cell Biology, 2014, 141(6): 577–585
doi: 10.1007/s00418-014-1186-1 pmid: 24509806
25 Pawley J. Handbook of Biological Confocal Microscopy. Berlin: Springer, 2010
26 Juette M F, Gould T J, Lessard M D, Mlodzianoski M J, Nagpure B S, Bennett B T, Hess S T, Bewersdorf J. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nature Methods, 2008, 5(6): 527–529
doi: 10.1038/nmeth.1211 pmid: 18469823
27 Zahreddine R N, Cormack R H, Cogswell C J. Simultaneous quantitative depth mapping and extended depth of field for 4D microscopy through PSF engineering. International Society for Optics and Photonics, 2012, 8227: 822705
28 Martínez-Corral M. Point spread function engineering in confocal scanning microscopy. International Society for Optics and Photonics, 2003, 5182: 112–122
29 Hell S W. Toward fluorescence nanoscopy. Nature Biotechnology, 2003, 21(11): 1347–1355
doi: 10.1038/nbt895 pmid: 14595362
30 Keller J. Optimal de-excitation patterns for RESOLFT-microscopy. 2006,
31 Ding Y, Xi P, Ren Q. Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy. Chinese Science Bulletin, 2011, 56(18): 1857–1876
doi: 10.1007/s11434-011-4502-3
32 Hell S W, Jakobs S, Kastrup L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Applied Physics A, Materials Science & Processing, 2003, 77(7): 859–860
doi: 10.1007/s00339-003-2292-4
33 Vicidomini G, Sch?nle A, Ta H, Han K Y, Moneron G, Eggeling C, Hell S W. STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLOS ONE, 2013, 8(1): e54421
doi: 10.1371/journal.pone.0054421 pmid: 23349884
34 Vicidomini G, Moneron G, Han K Y, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell S W. Sharper low-power STED nanoscopy by time gating. Nature Methods, 2011, 8(7): 571–573
doi: 10.1038/nmeth.1624 pmid: 21642963
35 Wang Y, Kuang C, Gu Z, Xu Y, Li S, Hao X, Liu X. Time-gated stimulated emission depletion nanoscopy. Optical Engineering (Redondo Beach, Calif), 2013, 52(9): 093107-1–093107-8
doi: 10.1117/1.OE.52.9.093107
36 Boyer G, Sarafis V. Two pinhole superresolution using spatial filters. Optik-International Journal for Light and Electron Optics, 2001, 112(4): 177–179
doi: 10.1078/0030-4026-00033
37 Cox I J, Sheppard C J R, Wilson T. Reappraisal of arrays of concentric annuli as superresolving filters. Journal of the Optical Society of America, 1982, 72(9): 1287–1291
doi: 10.1364/JOSA.72.001287
38 Cox I J, Sheppard C J R. Information capacity and resolution in an optical system. Journal of the Optical Society of America A, 1986, 3(8): 1152–1158
doi: 10.1364/JOSAA.3.001152
39 Wang Y, Kuang C, Gu Z, Liu X. Image subtraction method for improving lateral resolution and SNR in confocal microscopy. Optics & Laser Technology, 2013, 48: 489–494
doi: 10.1016/j.optlastec.2012.11.018
40 Okugawa H. A new imaging method for confocal microscopy. International Society for Optics and Photonics, 2008, 6860: 68600K-1–68600K-7
41 Gasecka A, Daradich A, Dehez H, Piché M, C?té D. Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy. Optics Letters, 2013, 38(21): 4510–4513
doi: 10.1364/OL.38.004510 pmid: 24177132
42 Xue Y, Kuang C, Li S, Gu Z, Liu X. Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy. Optics Express, 2012, 20(16): 17653–17666
doi: 10.1364/OE.20.017653 pmid: 23038317
43 Li S, Kuang C, Hao X, Wang Y, Ge J, Liu X. Enhancing the performance of fluorescence emission difference microscopy using beam modulation. Journal of Optics, 2013, 15(12): 125708–125715
doi: 10.1088/2040-8978/15/12/125708
44 Hao X, Kuang C, Wang T, Liu X. Effects of polarization on the de-excitation dark focal spot in STED microscopy. Journal of Optics, 2010, 12(11): 115707
doi: 10.1088/2040-8978/12/11/115707
45 Rong Z, Li S, Kuang C, Xu Y, Liu X. Real-time super-resolution imaging by high-speed fluorescence emission difference microscopy. Journal of Modern Optics, 2014, 61(16): 1364–1371
doi: 10.1080/09500340.2014.933272
46 Chmyrov A, Keller J, Grotjohann T, Ratz M, d’Este E, Jakobs S, Eggeling C, Hell S W. Nanoscopy with more than 100,000 ‘doughnuts’. Nature Methods, 2013, 10(8): 737–740
doi: 10.1038/nmeth.2556 pmid: 23832150
Related articles from Frontiers Journals
[1] Shaosheng DAI,Zhihui DU,Haiyan XIANG,Jinsong LIU. Reconstruction algorithm of super-resolution infrared image based on human vision processing mechanism[J]. Front. Optoelectron., 2015, 8(2): 195-202.
[2] Kui ZHANG,Yongyou GENG,Yang WANG,Yiqun WU. Progress of super-resolution near-field structure and its application in optical data storage[J]. Front. Optoelectron., 2014, 7(4): 475-485.
[3] Wen-Liang GONG, Zhe HU?§?, Chong LI, Guo-Feng ZHANG, Tao CHEN, Matthew. P. ALDRED, Zhen-Li HUANG, Ming-Qiang ZHU. Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization[J]. Front Optoelec, 2013, 6(4): 458-467.
[4] Zhen WANG. Recent advances of optical imaging in animal stroke model[J]. Front Optoelec, 2013, 6(2): 134-145.
[5] Jia WANG, Qingyan WANG, Mingqian ZHANG. Development and prospect of near-field optical measurements and characterizations[J]. Front Optoelec, 2012, 5(2): 171-181.
[6] Yuzhang CHEN, Kecheng YANG, Xiaohui ZHANG, Min XIA, Wei LI. Modelling of beam propagation and its applications for underwater imaging[J]. Front Optoelec Chin, 2011, 4(4): 398-406.
[7] Xiaofei YANG, Qian LI, Xiaomin CHENG. Progress of super-resolution near-field structure in near-field optical storage technology[J]. Front Optoelec Chin, 2008, 1(3-4): 292-298.
[8] ZHOU Liwei. On the theory of temporal aberrations for dynamic electron optics[J]. Front. Optoelectron., 2008, 1(1-2): 50-57.
Full text