Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2015, Vol. 8 Issue (1) : 73-80     DOI: 10.1007/s12200-014-0443-1
Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions
Department of Physics and International Laser Center, Lomonosov Moscow State University, Leninskie gory, Moscow 119992, Russia
Download: PDF(721 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

In this paper, we experimentally observed generation of the second and the third optical harmonics and the broadband terahertz radiation in the course of 800 nm 120 fs pulse in atmospheric air. The analysis of their polarization properties revealed unity of their nonlinear optical nature. Taking into account only the third-order nonlinear response of the neutral molecules of air, we analytically described the newly generated elliptically polarized 3d harmonic, the linear polarization of terahertz radiation and the stability of terahertz energy yield for the initial circularly polarized ω pump pulse.

Keywords terahertz      polarization      harmonics      nonlinearity     
Corresponding Authors: Mikhail ESAULKOV   
Online First Date: 31 July 2014    Issue Date: 13 February 2015
 Cite this article:   
Olga KOSAREVA,Vladimir MAKAROV,Nikolay PANOV, et al. Simultaneous generation of nonlinear optical harmonics and terahertz radiation in air: polarization discrimination of various nonlinear contributions[J]. Front. Optoelectron., 2015, 8(1): 73-80.
E-mail this article
E-mail Alert
Articles by authors
Vladimir MAKAROV
Nikolay PANOV
Fig.1  Scheme of experimental setup. The dielectric mirror 1 (DM1) splits the input optical beam with 50% reflection and 50% transmission. The second harmonic pulse is generated in beta barium borate crystal (BBO) and delayed with a delay line (DL). The wave plates (WP1 and WP2) were used to control the polarization state of the beams, the mirror (M1) reflected second harmonic radiation and transmitted the fundamental radiation, the Glan prism (GP) cleaned the linear polarization of the second harmonic radiation. The dielectric mirror 2 (DM2) recombined the two beams. Lenses (L1 and L2) were used to focus and collimate the optical radiation, the photodiode (PD) detected the intensity of second harmonic radiation. Silicon filter (Si) was used to block the optical radiation and transmit terahertz radiation. The off-axis parabolic mirrors (PM1 and PM2) guided the terahertz beam into the entrance window of a Golay cell detector
Fig.2  Measured intensity of the 2ω radiation polarized orthogonally to the initial 2ω polarization vs angle ψ between electric fields of ω and 2ω pulse at zero delay between pulses (green circles). The solid line shows the dependence of the 2 ω energy at the crossed analyzer in accordance with Eq. (4) (see Section 4). Black squares and red circles show the dependence of W y 2 ω vs the angle ψfor 4.0 and 2.8 ps delay between ωand 2ω pulse (the moments of realignment of N2 and O2 molecules respectively).
Fig.3  Energy of y- (a) and x- (b) polarized terahertz radiation vs the angle ψ between electric fields of ω and 2ω pulse. The solid curves show the dependences of the x- and y-polarized terahertz energy in accordance with the Eqs. (7) and (8) (see Section 4)
Fig.4  Polarization of the third harmonic radiation (black squares) as compared with the polarization if the initial ω radiation (red circles) and the linear 2ω polarization direction (blue line). Orange solid line shows the simulated 3ω polarization (Eqs. (10) and (11))
Fig.5  Energy of subsequent terahertz pulses generated by circularly polarized ω beam and linearly polarized 2ω beam in case of no terahertz analyzer (a) and terahertz wire-grid analyzer (b) present in the collimated terahertz beam
1 Shen Y R. Principles of Nonlinear Optics. New York: Wiley-Interscience, 1984, 575
2 Wynne J, Sorokin P. Optical mixing in atomic vapors. In: Shen Y R, ed. Nonlinear Infrared Generation. Berlin: Springer-Verlag. 1977, 159–214
3 Fedotov A, Koroteev N, Zheltikov A. Phase-matching effects in the generation of third and fifth harmonics of Nd:YAG-laser radiation in a low-temperature laser-produced plasma. Laser Physics, 1995, 5(4): 835–840
4 Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
doi: 10.1364/OL.25.001210 pmid: 18066171
5 Houard A, Liu Y, Prade B, Mysyrowicz A. Polarization analysis of terahertz radiation generated by four-wave mixing in air. Optics Letters, 2008, 33(11): 1195–1197
doi: 10.1364/OL.33.001195 pmid: 18516171
6 Vvedenskii N V, Korytin A I, Kostin V A, Murzanev A A, Silaev A A, Stepanov A N. Two-color laser-plasma generation of terahertz radiation using a frequency-tunable half harmonic of a femtosecond pulse. Physical Review Letters, 2014, 112(5): 055004–055007
doi: 10.1103/PhysRevLett.112.055004 pmid: 24580606
7 Borodin A V, Panov N A, Kosareva O G, Andreeva V A, Esaulkov M N, Makarov V A, Shkurinov A P, Chin S L, Zhang X C. Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases. Optics Letters, 2013, 38(11): 1906–1908
doi: 10.1364/OL.38.001906 pmid: 23722785
8 Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
doi: 10.1364/OE.15.004577 pmid: 19532704
9 Théberge F, Chateauneuf M, Roy G, Mathieu P, Dubois J. Generation of tunable and broadband far-infrared laser pulses during two-color filamentation. Physical Review, 2010, 81(3): 033821
doi: 10.1103/PhysRevA.81.033821
10 Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001
doi: 10.1103/PhysRevLett.103.023001 pmid: 19659200
11 Kosareva O, Panov N, Makarov V, Perezhogin I, Marceau C, Chen Y, Yuan S, Wang T, Zeng H, Savel'ev A, Chin S L. Polarization rotation due to femtosecond filamentation in an atomic gas. Optics Letters, 2010, 35: 2904–2906
doi: 10.1364/OL.35.002904
12 Morgen M, Price W, Hunziker L, Ludowise P, Blackwell M, Chen Y. Femtosecond Raman-induced polarization spectroscopy studies of rotational coherence in O2, N2 and CO2. Chemical Physics Letters, 1993, 209(1–2): 1–9
doi: 10.1016/0009-2614(93)87192-6
13 Gryaznov G A, Makarov V A, Perezhogin I A, Potravkin N N. Modeling of nonlinear optical activity in propagation of ultrashort elliptically polarized laser pulses. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(1): 013306–013316
doi: 10.1103/PhysRevE.89.013306 pmid: 24580359
14 Panov N, Kosareva O, Savel'ev-Trofimov A, Uryupina D, Perezhogin I, Makarov V. Filamentation of femtosecond Gaussian pulses with close-to-linear or -circular elliptical polarization. Quantum Electronics, 2011, 41(2): 160–162
doi: 10.1070/QE2011v041n02ABEH014423
Related articles from Frontiers Journals
[1] Mehdi SHIRDEL,Mohammad Ali MANSOURI-BIRJANDI. All-optical bistable switching, hard-limiter and wavelength-controlled power source[J]. Front. Optoelectron., 2016, 9(4): 560-564.
[2] Ning LI,Honglei ZHAN,Kun ZHAO,Zhenwei ZHANG,Chenyu LI,Cunlin ZHANG. Characterizing PM2.5 in Beijing and Shanxi Province using terahertz radiation[J]. Front. Optoelectron., 2016, 9(4): 544-548.
[3] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[4] Daoxin DAI,Shipeng WANG. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications[J]. Front. Optoelectron., 2016, 9(3): 450-465.
[5] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[6] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[7] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[8] Qian LI,Honglei ZHAN,Fangli QIN,Wujun JIN,Honglan LIU,Kun ZHAO. Detecting NO--3 concentration in nitrate solutions using terahertz time-domain spectroscopy[J]. Front. Optoelectron., 2015, 8(1): 62-67.
[9] J. Bianca JACKSON,Julien LABAUNE,Rozenn BAILLEUL-LESUER,Laura D'ALESSANDRO,Alison WHYTE,John W. BOWEN,Michel MENU,Gerard MOUROU. Terahertz pulse imaging in archaeology[J]. Front. Optoelectron., 2015, 8(1): 81-92.
[10] Yee Sin ANG,Qinjun CHEN,Chao ZHANG. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime[J]. Front. Optoelectron., 2015, 8(1): 3-26.
[11] Xiaoling ZHANG,Jianqiang GU,Jiaguang HAN,Weili ZHANG. Tailoring electromagnetic responses in terahertz superconducting metamaterials[J]. Front. Optoelectron., 2015, 8(1): 44-56.
[12] Dongwei WU,Jianjun LIU,Hao HAN,Zhanghua HAN,Zhi HONG. A high Q terahertz asymmetrically coupled resonator and its sensing performance[J]. Front. Optoelectron., 2015, 8(1): 68-72.
[13] Honglei ZHAN,Fangli QIN,Wujun JIN,Li’na GE,Honglan LIU,Kun ZHAO. Quantitative determination of n-heptane and n-octane using terahertz time-domain spectroscopy with chemometrics methods[J]. Front. Optoelectron., 2015, 8(1): 57-61.
[14] Qi JIN,Jinsong LIU,Kejia WANG,Zhengang YANG,Shenglie WANG,Kefei YE. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique[J]. Front. Optoelectron., 2015, 8(1): 104-109.
[15] Tianyi WANG,Zhengang YANG,Si ZOU,Kejia WANG,Shenglie WANG,Jinsong LIU. Time behavior of field screening effects in small-size GaAs photoconductive terahertz antenna[J]. Front. Optoelectron., 2015, 8(1): 98-103.
Full text